qpGraphDensity | R Documentation |
Calculates and plots the graph density as function of the non-rejection rate.
qpGraphDensity(nrrMatrix, threshold.lim=c(0,1), breaks=5,
plot=TRUE, qpGraphDensityOutput=NULL,
density.digits=0,
titlegd="graph density as function of threshold")
nrrMatrix |
matrix of non-rejection rates. |
threshold.lim |
range of threshold values on the non-rejection rate. |
breaks |
either a number of threshold bins or a vector of threshold breakpoints. |
plot |
logical; if TRUE makes a plot of the result; if FALSE it does not. |
qpGraphDensityOutput |
output from a previous call to
|
density.digits |
number of digits in the reported graph densities. |
titlegd |
main title to be shown in the plot. |
The estimate of the sparseness of the resulting qp-graphs is calculated as one minus the area enclosed under the curve of graph densities.
A list with the graph density as function of threshold and an estimate of the sparseness of the resulting qp-graphs across the thresholds.
R. Castelo and A. Roverato
Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n, J. Mach. Learn. Res., 7:2621-2650, 2006.
qpNrr
qpAvgNrr
qpEdgeNrr
qpClique
require(mvtnorm)
nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate
set.seed(123)
A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))
## the higher the q the sparser the qp-graph
nrr.estimates <- qpNrr(X, q=1, verbose=FALSE)
qpGraphDensity(nrr.estimates, plot=FALSE)$sparseness
nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)
qpGraphDensity(nrr.estimates, plot=FALSE)$sparseness
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.