ThresholdBic | R Documentation |
A bicluster is the fundamental result found using MCbiclust. These three functions are essential for the precise definition of these biclusters.
ThresholdBic(cor.vec, sort.order, pc1, samp.sig = 0)
PC1Align(gem, pc1, cor.vec, sort.order, bic)
ForkClassifier(pc1, samp.num)
cor.vec |
Correlation vector (output of |
sort.order |
Order of samples (output of |
pc1 |
PC1 values for samples (output of |
samp.sig |
Value between 0 and 1 determining number of samples in bicluster |
gem |
Gene expression matrix containing genes as rows and samples as columns. |
bic |
bicluster (output of |
samp.num |
Number of samples in the bicluster |
ThresholdBic()
takes as its main inputs the correlation vector
(output of CVEval()
), sample ordering (output of
SampleSort()
), PC1 vector (output of PC1VecFun
) and returns
a list of the genes and samples which belong to the bicluster according
to a certain level of significance.
PC1Align()
is a function used once the bicluster has been found to
ensure that the upper fork samples (those with higher PC1 values) correspond
to those samples that have genes with positive correlation vector values
up-regulated.
ForkClassifier()
is a function used to classify which samples are in
the upper or lower fork.
Defined bicluster
data(CCLE_small)
data(Mitochondrial_genes)
mito.loc <- (row.names(CCLE_small) %in% Mitochondrial_genes)
CCLE.mito <- CCLE_small[mito.loc,]
set.seed(102)
CCLE.seed <- FindSeed(gem = CCLE.mito,
seed.size = 10,
iterations = 100,
messages = 1000)
CCLE.sort <- SampleSort(gem = CCLE.mito,seed = CCLE.seed,sort.length = 11)
# Full ordering are in Vignette_sort in sysdata.rda
CCLE.samp.sort <- MCbiclust:::Vignette_sort[[1]]
CCLE.pc1 <- PC1VecFun(top.gem = CCLE.mito,
seed.sort = CCLE.samp.sort,
n = 10)
CCLE.cor.vec <- CVEval(gem.part = CCLE.mito,
gem.all = CCLE_small,
seed = CCLE.seed,
splits = 10)
CCLE.bic <- ThresholdBic(cor.vec = CCLE.cor.vec,sort.order = CCLE.samp.sort,
pc1 = as.numeric(CCLE.pc1))
CCLE.pc1 <- PC1Align(gem = CCLE_small, pc1 = CCLE.pc1,
cor.vec = CCLE.cor.vec ,
sort.order = CCLE.samp.sort,
bic =CCLE.bic)
CCLE.fork <- ForkClassifier(CCLE.pc1, samp.num = length(CCLE.bic[[2]]))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.