test_that("Gene weight on reference dataset works", {
data(tcga_expr_df)
# transform from data.frame to SummarizedExperiment
tcga_se <- SummarizedExperiment(t(tcga_expr_df[ , -(1:4)]),
colData=tcga_expr_df[ , 2:4])
colnames(tcga_se) <- tcga_expr_df$tcga_id
colData(tcga_se)$sample_id <- tcga_expr_df$tcga_id
hypoxia_gene_ids <- get_hypoxia_genes()
hypoxia_gene_ids <- intersect(hypoxia_gene_ids, rownames(tcga_se))
# get the gene ids we want to use for normalization
normalization_gene_ids = rownames(tcga_se)
colData(tcga_se)$Y <- ifelse(colData(tcga_se)$is_normal, 0, 1)
# now we can get the gene weightings
res <- get_gene_weights(tcga_se, hypoxia_gene_ids, unidirectional=TRUE)
gene_weights_test <- res[[1]]
sample_scores <- res[[2]]
data("gene_weights_reference")
expect_equal(unlist(gene_weights_test[,1]), unlist(gene_weights_reference[,1]))
expect_equal(gene_weights_test[,2], as.character(gene_weights_reference[,2]))
expect_equal(row.names(gene_weights_test), row.names(gene_weights_reference))
})
test_that("test classification on reference dataset works", {
data(tcga_expr_df)
# transform from data.frame to SummarizedExperiment
tcga_se <- SummarizedExperiment(t(tcga_expr_df[ , -(1:4)]),
colData=tcga_expr_df[ , 2:4])
colnames(tcga_se) <- tcga_expr_df$tcga_id
colData(tcga_se)$sample_id <- tcga_expr_df$tcga_id
hypoxia_gene_ids <- get_hypoxia_genes()
hypoxia_gene_ids <- intersect(hypoxia_gene_ids, rownames(tcga_se))
colData(tcga_se)$Y <- ifelse(colData(tcga_se)$is_normal, 0, 1)
# get the gene ids we want to use for normalization
normalization_gene_ids = rownames(tcga_se)
# now we can get the gene weightings
res <- get_gene_weights(tcga_se, hypoxia_gene_ids, unidirectional=TRUE)
sample_scores <- res[[2]]
training_res <- get_classification_accuracy(sample_scores, positive_val=1)
print(training_res[[2]]-0.897356)
expect_equal(round(training_res[[2]], 5), 0.89736)
})
test_that("test classification on new dataset works", {
data(tcga_expr_df)
# transform from data.frame to SummarizedExperiment
tcga_se <- SummarizedExperiment(t(tcga_expr_df[ , -(1:4)]),
colData=tcga_expr_df[ , 2:4])
colnames(tcga_se) <- tcga_expr_df$tcga_id
colData(tcga_se)$sample_id <- tcga_expr_df$tcga_id
hypoxia_gene_ids <- get_hypoxia_genes()
hypoxia_gene_ids <- intersect(hypoxia_gene_ids, rownames(tcga_se))
colData(tcga_se)$Y <- ifelse(colData(tcga_se)$is_normal, 0, 1)
# get the gene ids we want to use for normalization
normalization_gene_ids = rownames(tcga_se)
# now we can get the gene weightings
res <- get_gene_weights(tcga_se, hypoxia_gene_ids, unidirectional=TRUE)
gene_weights <- res[[1]]
sample_scores <- res[[2]]
data(new_samp_df)
new_samp_se <- SummarizedExperiment(t(new_samp_df[ , -(1)]),
colData=new_samp_df[, 1, drop=FALSE])
colnames(colData(new_samp_se)) <- "sample_id"
new_score_df_calculated <- get_new_samp_score(gene_weights, new_samp_se)
data(expected_score_output)
row.names(expected_score_output) <- NULL
new_score_df_calculated <- as.data.frame(new_score_df_calculated)
row.names(new_score_df_calculated) <- NULL
expect_equal(new_score_df_calculated, expected_score_output)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.