IFAA is a novel approach to make inference on the association of covariates with the absolute abundance (AA) of microbiome in an ecosystem.
# install from GitHub:
devtools::install_github("gitlzg/IFAA")
# install from Bioconductor:
if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("IFAA")
```r
## Usage
Use sample datasets to run `IFAA()` function.
```r
# Detailed instructions on the package are provided in the manual and vignette
library(IFAA)
library(SummarizedExperiment)
data(dataM)
dim(dataM)
dataM[1:5, 1:8]
data(dataC)
dim(dataC)
dataC[1:3, ]
## Merge microbiome data and covariate data by id, to avoid unmatching observations.
data_merged<-merge(dataM,dataC,by="id",all=FALSE)
## Seperate microbiome data and covariate data, drop id variable from microbiome data
dataM_sub<-data_merged[,colnames(dataM)[!colnames(dataM)%in%c("id")]]
dataC_sub<-data_merged[,colnames(dataC)]
## Create SummarizedExperiment object
test_dat<-SummarizedExperiment(assays=list(MicrobData=t(dataM_sub)), colData=dataC_sub)
## If you already have a SummarizedExperiment format data, you can
## ignore the above steps.
results <- IFAA(experiment_dat = test_dat,
testCov = c("v1"),
ctrlCov = c("v2","v3"),
fdrRate = 0.05)
Once the analysis is done, you can extract the regression coefficients along with 95% confidence intervals using this command:
summary_res<-results$full_results
Use sample datasets to run MZILN()
function.
results <- MZILN(experiment_dat=test_dat,
targetTaxa = "rawCount18",
refTaxa=c("rawCount11"),
allCov=c("v1","v2","v3"),
fdrRate=0.15)
```
Regression results including confidence intervals can be extracted in the following way:
```r
results$full_results
Zhigang Li, Lu Tian, A. James O'Malley, Margaret R. Karagas, Anne G. Hoen, Brock C. Christensen, Juliette C. Madan, Quran Wu, Raad Z. Gharaibeh, Christian Jobin, Hongzhe Li (2020) IFAA: Robust association identification and Inference For Absolute Abundance in microbiome analyses. arXiv:1909.10101v3
Zhigang Li, Katherine Lee, Margaret Karagas, Juliette Madan, Anne Hoen, James O’Malley and Hongzhe Li (2018 ) Conditional regression based on a multivariate zero-inflated logistic normal model for modeling microbiome data. Statistics in Biosciences 10(3):587-608
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.