R/plots_compare_Norm.R

Defines functions compareNormalizationD_HC wrapper.compareNormalizationD_HC

Documented in compareNormalizationD_HC wrapper.compareNormalizationD_HC

#' @title Builds a plot from a dataframe
#' 
#' @description Wrapper to the function that plot to compare the quantitative 
#' proteomics data before and after normalization.
#'
#' @param objBefore A dataframe that contains quantitative data before
#' normalization.
#'
#' @param objAfter A dataframe that contains quantitative data after
#' normalization.
#'
#' @param condsForLegend A vector of the conditions (one condition
#' per sample).
#'
#' @param ... arguments for palette
#'
#' @return A plot
#'
#' @author Samuel Wieczorek
#'
#' @examples
#' 
#' data(Exp1_R25_pept, package='DAPARdata')
#' obj <- Exp1_R25_pept
#' conds <- Biobase::pData(obj)[, "Condition"]
#' objAfter <- wrapper.normalizeD(
#' obj = obj, method = "QuantileCentering",
#' conds = conds, type = "within conditions"
#' )
#' wrapper.compareNormalizationD_HC(obj, objAfter, conds,
#' pal = ExtendPalette(2))
#'
#' @export
#'
#'
wrapper.compareNormalizationD_HC <- function(objBefore,
    objAfter,
    condsForLegend = NULL,
    ...) {
    qDataBefore <- Biobase::exprs(objBefore)
    qDataAfter <- Biobase::exprs(objAfter)

    compareNormalizationD_HC(qDataBefore, 
        qDataAfter, 
        conds = condsForLegend, 
        ...)
}




#' @title Builds a plot from a dataframe. Same as compareNormalizationD but
#' uses the library \code{highcharter}
#' 
#' @description 
#' Plot to compare the quantitative proteomics data before and after
#' normalization using the package \code{highcharter}
#'
#'
#' @param qDataBefore A dataframe that contains quantitative data before
#' normalization.
#'
#' @param qDataAfter A dataframe that contains quantitative data after
#' normalization.
#'
#' @param keyId xxx
#'
#' @param conds A vector of the conditions (one condition
#' per sample).
#'
#' @param pal xxx
#'
#' @param subset.view xxx
#'
#' @param n An integer that is equal to the maximum number of displayed points.
#' This number must be less or equal to the size
#' of the dataset. If it is less than it, it is a random selection
#'
#' @param type scatter or line
#'
#' @return A plot
#'
#' @author Samuel Wieczorek
#'
#' @examples
#' data(Exp1_R25_prot, package="DAPARdata")
#' obj <- Exp1_R25_prot
#' qDataBefore <- Biobase::exprs(obj)
#' conds <- Biobase::pData(obj)[, "Condition"]
#' id <- Biobase::fData(obj)[, 'Protein_IDs']
#' pal <- ExtendPalette(2)
#' objAfter <- wrapper.normalizeD(obj,
#' method = "QuantileCentering",
#' conds = conds, type = "within conditions"
#' )
#'
#' n <- 1
#' compareNormalizationD_HC(
#' qDataBefore = qDataBefore,
#' qDataAfter = Biobase::exprs(objAfter), 
#' keyId = id, 
#' pal = pal, 
#' n = n,
#' subset.view = seq_len(n),
#' conds = conds)
#'
#' @import highcharter
#' @importFrom utils str
#'
#' @export
#'
compareNormalizationD_HC <- function(qDataBefore,
    qDataAfter,
    keyId = NULL,
    conds = NULL,
    pal = NULL,
    subset.view = NULL,
    n = 1,
    type = "scatter") {
    
    pkgs.require('RColorBrewer')
    
    if (is.null(conds)) {
        warning("'conds' is null.")
        return(NULL)
    }
    if ( n <0 || n >1){
        warning("'n' must be in the range [0, 1]. Set to 0.2")
        n <- 0.2
    }

    if (is.null(keyId)) {
        keyId <- seq_len(length(qDataBefore))
    }

    if (!is.null(subset.view) && length(subset.view) > 0) {
        keyId <- keyId[subset.view]
        if (nrow(qDataBefore) > 1) {
            if (length(subset.view) == 1) {
                qDataBefore <- t(qDataBefore[subset.view, ])
                qDataAfter <- t(qDataAfter[subset.view, ])
            } else {
                qDataBefore <- qDataBefore[subset.view, ]
                qDataAfter <- qDataAfter[subset.view, ]
            }
            n <- 1
        }
    }

    if (!match(type, c("scatter", "line"))) {
        warning("'type' must be equal to 'scatter' or 'line'.")
        return(NULL)
    }

    # if (is.null(n)) {
    #     n <- seq_len(nrow(qDataBefore))
    # } else {
        # if (n > nrow(qDataBefore)) {
        #     warning("'n' is higher than the number of rows of datasets. 
        #     Set to number of rows.")
        #     n <- nrow(qDataBefore)
        # }
    # Truncate dataset
    ind <- sample(seq_len(nrow(qDataBefore)), n*nrow(qDataBefore))
    keyId <- keyId[ind]
    if (nrow(qDataBefore) > 1) {
        if (length(ind) == 1) {
            qDataBefore <- t(qDataBefore[ind, ])
            qDataAfter <- t(qDataAfter[ind, ])
        } else {
            qDataBefore <- qDataBefore[ind, ]
            qDataAfter <- qDataAfter[ind, ]
        }
    }
    #}

    myColors <- NULL
    if (is.null(pal)) {
        warning("Color palette set to default.")
        myColors <- GetColorsForConditions(conds, 
            ExtendPalette(length(unique(conds))))
    } else {
        if (length(pal) != length(unique(conds))) {
            warning("The color palette has not the same dimension as 
                the number of samples")
            myColors <- GetColorsForConditions(conds, 
                ExtendPalette(length(unique(conds))))
        } else {
            myColors <- GetColorsForConditions(conds, pal)
        }
    }

    x <- qDataBefore
    y <- qDataAfter / qDataBefore

    ## Colors definition
    legendColor <- unique(myColors)
    txtLegend <- unique(conds)


    series <- list()
    for (i in seq_len(length(conds))) {
        series[[i]] <- list(
            name = colnames(x)[i],
            data = list_parse(data.frame(
                x = x[, i],
                y = y[, i],
                name = keyId
            ))
        )
    }

    h1 <- highchart() %>%
        dapar_hc_chart(chartType = type) %>%
        hc_add_series_list(series) %>%
        hc_colors(myColors) %>%
        hc_tooltip(headerFormat = "", pointFormat = "Id: {point.name}") %>%
        dapar_hc_ExportMenu(filename = "compareNormalization")
    h1
}
prostarproteomics/DAPAR documentation built on Oct. 11, 2024, 12:03 p.m.