runBanksyPCA | R Documentation |
Run PCA on a BANKSY matrix.
runBanksyPCA(
se,
use_agf = FALSE,
lambda = 0.2,
npcs = 20L,
assay_name = NULL,
scale = TRUE,
group = NULL,
M = NULL,
seed = NULL
)
se |
A |
use_agf |
A logical vector specifying whether to use the AGF for computing principal components. |
lambda |
A numeric vector in |
npcs |
An integer scalar specifying the number of principal components to compute. |
assay_name |
A string scalar specifying the name of the assay used in
|
scale |
A logical scalar specifying whether to scale features before PCA. Defaults to TRUE. |
group |
A string scalar specifying a grouping variable for samples in
|
M |
Advanced usage. An integer vector specifying the highest azimuthal
Fourier harmonic to use. If specified, overwrites the |
seed |
Seed for PCA. If not specified, no seed is set. |
This function runs PCA on the BANKSY matrix (see getBanksyMatrix) with features scaled to zero mean and unit standard deviation.
A SpatialExperiment / SingleCellExperiment / SummarizedExperiment
object with PC coordinates in reducedDims(se)
.
data(rings)
spe <- computeBanksy(rings, assay_name = "counts", M = 1, k_geom = c(15, 30))
spe <- runBanksyPCA(spe, M = 1, lambda = 0.2, npcs = 20)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.