knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "figures/", dpi = 36 )
Here, we demonstrate how BANKSY can be used with Harmony for integrating multiple spatial omics datasets in the presence of strong batch effects. We use 10x Visium data of the human dorsolateral prefrontal cortex from Maynard et al (2018). The data comprise 12 samples obtained from 3 subjects, with manual annotation of the layers in each sample.
start.time <- Sys.time()
library(Banksy) library(SummarizedExperiment) library(SpatialExperiment) library(Seurat) library(scran) library(data.table) library(harmony) library(scater) library(cowplot) library(ggplot2) SEED <- 1000
We fetch the data for all 12 DLPFC samples with the spatialLIBD package. This might take awhile.
library(spatialLIBD) library(ExperimentHub) ehub <- ExperimentHub::ExperimentHub() spe <- spatialLIBD::fetch_data(type = "spe", eh = ehub)
After the download is completed, we trim the SpatialExperiment object, retaining only the counts and some metadata such as the sample identifier and pathology annotations. This saves some memory.
#' Remove NA spots na_id <- which(is.na(spe$layer_guess_reordered_short)) spe <- spe[, -na_id] #' Trim imgData(spe) <- NULL assay(spe, "logcounts") <- NULL reducedDims(spe) <- NULL rowData(spe) <- NULL colData(spe) <- DataFrame( sample_id = spe$sample_id, subject_id = factor(spe$sample_id, labels = rep(paste0("Subject", 1:3), each = 4)), clust_annotation = factor(as.numeric(spe$layer_guess_reordered_short)), in_tissue = spe$in_tissue, row.names = colnames(spe) ) colnames(spe) <- paste0(colnames(spe), "_", spe$sample_id) invisible(gc())
We analyse the first sample of each subject due to vignette runtime constraints.
spe <- spe[, spe$sample_id %in% c("151507", "151669", "151673")] sample_names <- unique(spe$sample_id)
Next, stagger the spatial coordinates across the samples so that spots from different samples do not overlap.
#' Stagger spatial coordinates locs <- spatialCoords(spe) locs <- cbind(locs, sample_id = factor(spe$sample_id)) locs_dt <- data.table(locs) colnames(locs_dt) <- c("sdimx", "sdimy", "group") locs_dt[, sdimx := sdimx - min(sdimx), by = group] global_max <- max(locs_dt$sdimx) * 1.5 locs_dt[, sdimx := sdimx + group * global_max] locs <- as.matrix(locs_dt[, 1:2]) rownames(locs) <- colnames(spe) spatialCoords(spe) <- locs
Find highly variable features and normalize counts. Here we use Seurat, but
other methods may also be used (e.g. scran::getTopHVGs
).
#' Get HVGs seu <- as.Seurat(spe, data = NULL) seu <- FindVariableFeatures(seu, nfeatures = 2000) #' Normalize data scale_factor <- median(colSums(assay(spe, "counts"))) seu <- NormalizeData(seu, scale.factor = scale_factor, normalization.method = "RC") #' Add data to SpatialExperiment and subset to HVGs aname <- "normcounts" assay(spe, aname) <- GetAssayData(seu) spe <- spe[VariableFeatures(seu),]
Compute BANKSY neighborhood matrices. We use k_geom=18
corresponding to
first and second-order neighbors in 10x Visium.
compute_agf <- TRUE k_geom <- 18 spe <- computeBanksy(spe, assay_name = aname, compute_agf = compute_agf, k_geom = k_geom)
Run PCA on the BANKSY matrix:
lambda <- 0.2 npcs <- 20 use_agf <- TRUE spe <- runBanksyPCA(spe, use_agf = use_agf, lambda = lambda, npcs = npcs, seed = SEED)
We run Harmony on the PCs of the BANKSY matrix:
set.seed(SEED) harmony_embedding <- HarmonyMatrix( data_mat = reducedDim(spe, "PCA_M1_lam0.2"), meta_data = colData(spe), vars_use = c("sample_id", "subject_id"), do_pca = FALSE, max.iter.harmony = 20, verbose = FALSE ) reducedDim(spe, "Harmony_BANKSY") <- harmony_embedding
Next, run UMAP on the 'raw' and Harmony corrected PCA embeddings:
spe <- runBanksyUMAP(spe, use_agf = TRUE, lambda = lambda, npcs = npcs) spe <- runBanksyUMAP(spe, dimred = "Harmony_BANKSY")
Visualize the UMAPs annotated by subject ID:
plot_grid( plotReducedDim(spe, "UMAP_M1_lam0.2", point_size = 0.1, point_alpha = 0.5, color_by = "subject_id") + theme(legend.position = "none"), plotReducedDim(spe, "UMAP_Harmony_BANKSY", point_size = 0.1, point_alpha = 0.5, color_by = "subject_id") + theme(legend.title = element_blank()) + guides(colour = guide_legend(override.aes = list(size = 5, alpha = 1))), nrow = 1, rel_widths = c(1, 1.2) )
Cluster the Harmony corrected PCA embedding:
spe <- clusterBanksy(spe, dimred = "Harmony_BANKSY", resolution = 0.55, seed = SEED) spe <- connectClusters(spe, map_to = "clust_annotation")
Generate spatial plots:
cnm <- clusterNames(spe)[2] spatial_plots <- lapply(sample_names, function(snm) { x <- spe[, spe$sample_id == snm] ari <- aricode::ARI(x$clust_annotation, colData(x)[, cnm]) df <- cbind.data.frame(clust=colData(x)[[cnm]], spatialCoords(x)) ggplot(df, aes(x=sdimy, y=sdimx, col=clust)) + geom_point(size = 0.5) + scale_color_manual(values = pals::kelly()[-1]) + theme_classic() + theme( legend.position = "none", axis.text.x=element_blank(), axis.text.y=element_blank(), axis.ticks=element_blank(), axis.title.x=element_blank(), axis.title.y=element_blank()) + labs(title = sprintf("Sample %s - ARI: %s", snm, round(ari, 3))) + coord_equal() }) plot_grid(plotlist = spatial_plots, ncol = 3, byrow = FALSE)
Vignette runtime:
Sys.time() - start.time
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.