R/deseq2.R

Defines functions deseq2_confects

Documented in deseq2_confects

#' Confident log2 fold changes based on a DESeq2 analysis
#'
#' For all possible absolute log2 fold changes, which genes have at least this
#' fold change at a specified False Discovery Rate? This is built by repeatedly
#' calling DESeq2::results with the "greaterAbs" alternative hypothesis.
#'
#' Results are presented in a table such that for any given LFC, if the reader
#' chooses the genes with abs(confect) less than this they are assured that this
#' set of genes has at least this LFC (with the specified FDR). The confect
#' column may also be viewed as a confidence bound on the LFC of each gene, with
#' a dynamic correction for multiple testing.
#'
#' @param object Object produced by the \code{DESeq2::DESeq} function.
#'
#' @param ... Further arguments to \code{DESeq2::results}. At a minimum you
#'   should specify either \code{contrast=} or \code{name=}.
#'
#' @param fdr False Discovery Rate to control for.
#'
#' @param step Granularity of log2 fold changes to test.
#'
#' @return
#'
#' See \code{\link{nest_confects}} for details of how to interpret the result.
#'
#' The \code{filtered} column in the result indicates whether DESeq2 filtered
#' the gene. Such genes do not count toward the total number of genes when
#' controlling FDR. If your intention is to obtain a ranking of all genes, you
#' should disable this with \code{deseq2_confects(..., cooksCutoff=Inf,
#' independentFiltering=FALSE)}.
#'
#' @examples
#'
#' # Generate some random data
#' n <- 20
#' folds <- seq(-8,8,length.out=n)
#' row_means <- runif(n, min=0, max=5)
#' lib_scale <- c(1,2,3,4)
#' means <- 2^(outer(folds, c(-0.5,-0.5,0.5,0.5))) *
#'     row_means * rep(lib_scale,each=n)
#' counts <- rnbinom(length(means), mu=means, size=1/0.1)
#' dim(counts) <- dim(means)
#'
#' group <- factor(c("A","A","B","B"))
#'
#' # Apply DESeq2
#' library(DESeq2)
#' dds <- DESeqDataSetFromMatrix(
#'     countData = counts,
#'     colData = data.frame(group=group),
#'     design = ~group)
#'
#' dds <- DESeq(dds)
#'
#' # Find top confident effect sizes
#' deseq2_confects(dds, name="group_B_vs_A", step=0.1)
#'
#' @export
deseq2_confects <- function(object, ..., fdr=0.05, step=0.01) {
    assert_that(requireNamespace("DESeq2", quietly=TRUE), msg=
        "deseq2_confects requires installing the Bioconductor package 'DESeq2'")

    n <- nrow(object)

    # Calculate effect column, determine which genes are filtered by DESeq2
    std_result <- DESeq2::results(object, ...)

   # DESeq2 may filter some genes before emitting pvalues
    filtered <- is.na(std_result$padj)
    subset_out <- which(!filtered)
    subset_n <- length(subset_out)

    pfunc <- function(subset_i, mag) {
        i <- subset_out[subset_i]

        result <- DESeq2::results(
            object, ..., altHypothesis="greaterAbs", lfcThreshold=mag)
        result_p <- result$pvalue[i]

        # This should never happen:
        assert_that(!any(is.na(result_p)),
            msg="unexpected extra filtering by DESeq2")

        result_p
    }

    confects <- nest_confects(subset_n, pfunc, fdr=fdr, step=step)
    confects$table$index <- subset_out[ confects$table$index ]

    if (subset_n < n) {
        extra <- data.frame(
            rank=(subset_n+1):n,
            index=which(filtered),
            confect=rep(NA,n-subset_n))
        confects$table <- rbind(confects$table, extra)
    }

    confects$table$effect <- std_result$log2FoldChange[confects$table$index]
    confects$table$confect <- sign(confects$table$effect)*confects$table$confect

    confects$table$baseMean <- std_result$baseMean[confects$table$index]
    confects$table$name <- rownames(object)[confects$table$index]
    confects$table$filtered <- filtered[confects$table$index]

    confects
}
pfh/topconfects documentation built on Dec. 12, 2024, 10:19 p.m.