#' bnpathplotCustom
#'
#' Plot pathway relationship using customized theme
#'
#' @param results the enrichment analysis result
#' @param exp gene expression matrix
#' @param expRow the type of the identifier of rows of expression matrix
#' @param expSample candidate rows to be included in the inference
#' default to all
#' @param algo structure learning method used in boot.strength()
#' default to "hc"
#' @param algorithm.args parameters to pass to
#' bnlearn structure learnng function
#' @param R the number of bootstrap
#' @param color color of node, default to adjusted p-value
#' @param cexCategory scaling factor of size of nodes
#' @param cexLine scaling factor of width of edges
#' @param cl cluster object from parallel::makeCluster()
#' @param showDir show the confidence of direction of edges
#' @param chooseDir if undirected edges are present, choose direction of edges
#' @param labelSize the size of label of the nodes
#' @param layout ggraph layout, default to "nicely"
#' @param qvalueCutOff the cutoff value for qvalue
#' @param adjpCutOff the cutoff value for adjusted pvalues
#' @param nCategory the number of pathways to be included
#' @param strType "normal" or "ms" for multiscale implementation
#' @param strThresh threshold for strength, automatically determined if NULL
#' @param compareRef whether compare to the reference network between pathway
#' @param hub change the shape of node according to hub scores (default NULL)
#' @param dep the tibble storing dependency score from library depmap
#' @param sizeDep whether to reflect DepMap score to the node size
#' @param cellLineName the cell line name to be included
#' @param strengthPlot append the barplot depicting edges with high strength
#' @param nStrength specify how many edges are included in the strength plot
#' @param fontFamily font family name to be used for plotting
#' @param glowEdgeNum edges with top-n confidence of direction are highlighted
#' @param nodePal vector of coloring of nodes (low, high)
#' @param edgePal vector of coloring of edges (low, high)
#' @param textCol color of texts in network plot
#' @param backCol color of background in network plot
#' @param barTextCol text color in barplot
#' @param barPal bar color
#' @param barBackCol background color in barplot
#' @param barLegendKeyCol legend key color in barplot
#' @param barAxisCol axis color in barplot
#' @param barPanelGridCol panel grid color in barplot
#' @param returnNet whether to return the network
#' @param scoreType score type to use on inference
#' @param disc discretize the expressoin data
#' @param tr Specify data.frame if one needs to discretize
#' as the same parameters as the other dataset
#' @param remainCont Specify characters when perform discretization,
#' if some columns are to be remain continuous
#' @param otherVar other variables to be included in the inference
#' @param otherVarName the names of other variables
#' @param onlyDf return only data.frame used for inference
#' @param orgDb perform clusterProfiler::setReadable
#' based on this organism database
#' @param seed A random seed to make the analysis reproducible, default is 1.
#' @examples
#' data("exampleEaRes");data("exampleGeneExp")
#' res <- bnpathplotCustom(results=exampleEaRes, exp=exampleGeneExp,
#' fontFamily="sans", glowEdgeNum=3, hub=3)
#' @return ggplot2 object
#'
#' @export
#'
bnpathplotCustom <- function (results, exp, expSample=NULL, algo="hc",
R=20, expRow="ENSEMBL", color="p.adjust",
cexCategory=1, cl=NULL, showDir=FALSE,
chooseDir=FALSE, labelSize=4, layout="nicely",
strType="normal", compareRef=FALSE, disc=FALSE,
tr=NULL, remainCont=NULL, qvalueCutOff=0.05,
adjpCutOff=0.05, nCategory=15, cexLine=1,
returnNet=FALSE, dep=NULL, sizeDep=FALSE,
cellLineName="5637_URINARY_TRACT",
fontFamily="sans", otherVar=NULL, otherVarName=NULL,
onlyDf=FALSE, algorithm.args=NULL,
strengthPlot=FALSE, nStrength=10,
strThresh=NULL, hub=NULL, glowEdgeNum=NULL,
nodePal=c("blue","red"), edgePal=c("blue","red"),
textCol="black", backCol="white",
barTextCol="black", barPal=c("red","blue"),
barBackCol="white", scoreType="bic-g",
barLegendKeyCol="white", orgDb=org.Hs.eg.db,
barAxisCol="black", barPanelGridCol="black",
seed = 1) {
# if (is.null(hub) ||
# is.null(glowEdgeNum) ||
# hub <= 0 || glowEdgeNum <= 0) {
# stop("please specify number >= 1 for hub, glowEdgeNum")}
if (length(nodePal)!=2 ||
length(edgePal)!=2 ||
length(barPal)!=2){
stop("Please pick two colors for nodePal, edgePal and barPal.")}
if (compareRef){stop("compareRef is currently not supported.")}
if (is.null(expSample)) {expSample <- colnames(exp)}
if (length(results)>1) {
stop("For multiple databases, please use bnpathplot().")}
# if (results@keytype == "kegg"){
# resultsGeneType <- "ENTREZID"
# } else {
# resultsGeneType <- results@keytype
# }
if (attributes(results)$class[1]=="enrichResult"){
typeOfOntology <- results@ontology
} else if (attributes(results)$class[1]=="gseaResult"){
typeOfOntology <- results@setType
}
if (!is.null(orgDb)){
results <- setReadable(results, OrgDb = orgDb)
}
tmpCol <- colnames(results@result)
## Make comparable
tmpCol[tmpCol=="core_enrichment"] <- "geneID"
tmpCol[tmpCol=="qvalues"] <- "qvalue"
tmpCol[tmpCol=="setSize"] <- "Count"
colnames(results@result) <- tmpCol
if (!"enrichmentScore" %in% colnames(results@result)){
results@result["enrichmentScore"] <- 0
}
if (sizeDep) {
if (is.null(dep)){dep <- depmap::depmap_crispr()}
filteredDep <- dep %>% filter(.data$cell_line==cellLineName)
}
res <- results@result
pcs <- c()
pwayNames <- c()
## Filtering according to qval, pval and nCategory
if (!is.null(qvalueCutOff)) {
res <- subset(res, res$qvalue < qvalueCutOff) }
if (!is.null(adjpCutOff)) {
res <- subset(res, res$p.adjust < adjpCutOff) }
if (nCategory) {
res <- res[seq_len(nCategory),]
res <- res[!is.na(res$ID),]
}
pathDep <- c()
for (i in seq_len(length(rownames(res)))) {
genesInPathway <- strsplit(res[i, ]$geneID, "/")[[1]]
if (sizeDep){
pathDep <- c(pathDep,
-1 * mean((filteredDep %>%
filter(.data$gene_name %in% genesInPathway))$dependency))
}
if (!is.null(orgDb)){
genesInPathway <- clusterProfiler::bitr(genesInPathway,
fromType="SYMBOL",
toType=expRow,
OrgDb=orgDb)[expRow][,1]
}
pathwayMatrix <- exp[ intersect(rownames(exp),
genesInPathway), expSample ]
if (dim(pathwayMatrix)[1]==0) {
message("no gene in the pathway present in expression data")
} else {
pathwayMatrixPca <- prcomp(t(pathwayMatrix), scale. = FALSE)$x[,1]
avExp <- apply(pathwayMatrix, 2, mean)
corFlag <- cor(pathwayMatrixPca, avExp)
if (corFlag < 0){pathwayMatrixPca <- pathwayMatrixPca*-1}
pwayNames <- c(pwayNames, res[i,]$Description)
pcs <- cbind(pcs, pathwayMatrixPca)
# pathwayMatrixSum <- apply(pathwayMatrix, 2, sum)
# pwayNames <- c(pwayNames, res[i,]$Description)
# pcs <- cbind(pcs, pathwayMatrixSum)
}
}
if (sizeDep) {names(pathDep) <- res$Description}
colnames(pcs) <- pwayNames
pcs <- data.frame(pcs, check.names=FALSE)
if (dim(pcs)[1]==0){return("error")}
if (!is.null(otherVar)) {
pcs <- cbind(pcs, otherVar)
if (!is.null(otherVarName)){
colnames(pcs) <- c(pwayNames, otherVarName)
}
}
if (disc){
pcs <- discDF(pcs, tr=tr, remainCont=remainCont)
}
if (onlyDf){
return(pcs)
}
if (strType == "normal"){
strength <- withr::with_seed(seed = seed, boot.strength(pcs,
algorithm=algo, algorithm.args=algorithm.args, R=R, cluster=cl))
} else if (strType == "ms"){
strength <- withr::with_seed(seed = seed,
inferMS(pcs, algo=algo, algorithm.args=algorithm.args, R=R, cl=cl))
}
if (strengthPlot){
strengthTop <- strength[order(strength$strength+strength$direction,
decreasing = TRUE),][seq_len(nStrength),]
strengthTop$label <- paste(strengthTop$from, "to", strengthTop$to)
stp <- strengthTop %>%
tidyr::pivot_longer(cols=c(.data$strength, .data$direction)) %>%
ggplot(aes(x=.data$label, y=.data$value, fill=.data$name))+
geom_bar(position="dodge",stat="identity",alpha=0.7)+
xlab("edges")+
coord_flip(ylim=c(min(strengthTop$strength,
strengthTop$direction)-0.05,1.0))+
scale_fill_manual(values=c(barPal[1], barPal[2]),
na.value="transparent")+
scale_x_discrete(labels = function(x) stringr::str_wrap(x,
width = 25))+
theme(
text=element_text(size=16, family=fontFamily,
color=barTextCol),
plot.background = element_rect(fill = barBackCol, colour = NA),
legend.background = ggplot2::element_blank(),
legend.key = element_rect(fill = barLegendKeyCol),
axis.text=element_text(color=barAxisCol),
axis.ticks = ggplot2::element_blank(),
axis.line = ggplot2::element_blank(),
axis.title.y = element_text(vjust=-0.5),
panel.grid.minor = ggplot2::element_blank(),
panel.background = element_blank(),
panel.grid = ggplot2::element_line(linetype = 3,
color = barPanelGridCol, size = 0.2))
}
if (!is.null(strThresh)){
av <- averaged.network(strength, threshold=strThresh)
} else {
av <- averaged.network(strength)
}
# if (chooseDir){
# av <- chooseEdgeDir(av, pcs, scoreType)
# }
av <- cextend(av, strict=FALSE)
g <- bnlearn::as.igraph(av)
e <- as_edgelist(g, names = TRUE)
eName <-paste0(e[,1], "_", e[,2])
colnames(e) <- c("from","to")
eDf <- merge(e, strength)
rownames(eDf) <- paste0(eDf$from, "_", eDf$to)
eDf <- eDf[eName, ]
g <- set.edge.attribute(g, "color", index=E(g), eDf$strength)
if (showDir){
g <- set.edge.attribute(g, "label", index=E(g), round(eDf$direction,2))
} else {
g <- set.edge.attribute(g, "label", index=E(g), NA)
}
hScore <- hub.score(g, scale = TRUE, weights = E(g)$color)$vector
## Make color for glowing edges
if (!is.null(glowEdgeNum)){
highEdge <- E(g)[order(E(g)$label,
decreasing=TRUE)][seq_len(glowEdgeNum)]
glowEdge <- E(g) %in% highEdge
E(g)$glowEdge <- E(g)$color
E(g)$glowEdge[!glowEdge] <- NA
E(g)$alphaEdge <- rep(1, length(E(g)))
E(g)$alphaEdge[!glowEdge] <- NA
} else {
E(g)$glowEdge <- NA
E(g)$alphaEdge <- NA
}
## Edge width
if (is.null(otherVar)) {
if (length(results@termsim) != 0) {
w <- results@termsim[ names(V(g)), names(V(g)) ]
wd <- reshape2::melt(w)
wd <- wd[wd[,1] != wd[,2],]
wd <- wd[!is.na(wd[,3]),]
rownames(wd) <- paste0(wd[,1], "_", wd[,2])
wd <- wd[ eName, ]
rawWidth <- wd[,3]
if (showDir){
rawWidth[is.na(rawWidth)] <- 0
}
E(g)$width <- sqrt(rawWidth * 5) * cexLine
edgeWName <- "similarity"
} else {
E(g)$width <- E(g)$color
edgeWName <- "strength"
}
} else {
E(g)$width <- E(g)$color
edgeWName <- "strength"
}## IFELSE OTHERVAR
if (sizeDep) {
sizeLab <- "-mean dependency"
scaleSizePathLow <- 1
scaleSizePathHigh <- 10
V(g)$size <- vapply(names(V(g)),
function(x) ifelse(x %in% names(pathDep),
as.numeric(pathDep[x]), 1), FUN.VALUE=1)
} else {
sizeLab <- "gene count"
scaleSizePathLow <- 3
scaleSizePathHigh <- 8
V(g)$size <- vapply(names(V(g)),
function(x) ifelse(x %in% res$Description,
as.numeric(subset(res, res$Description==x)["Count"]), 3),
FUN.VALUE=1)
}
V(g)$color <- vapply(names(V(g)),
function(x) ifelse(x %in% res$Description,
as.numeric(subset(res, res$Description==x)[color]),
as.numeric(apply(res[color], 2, mean))), FUN.VALUE=1)
if (!is.null(hub)){
## Make color for glowing nodes
defHub <- hScore[order(hScore, decreasing=TRUE)][seq_len(hub)]
nodeShape <- names(V(g)) %in% names(defHub)
V(g)$cyberColor <- V(g)$color
V(g)$cyberColor[!nodeShape] <- NA
V(g)$cyberAlpha <- rep(1, length(V(g)))
V(g)$cyberAlpha[!nodeShape] <- NA
} else {
V(g)$cyberColor <- NA
V(g)$cyberAlpha <- NA
}
V(g)$shape <- rep(19, length(V(g)))
## Plot
delG <- delete.vertices(g, igraph::degree(g)==0)
p <- ggraph(delG, layout=layout) +
geom_edge_link(edge_alpha=0.3,
position="identity",
aes_(edge_colour=~color, width=~width,
label=~label),
label_size=3,
label_colour=NA,
family=fontFamily,
angle_calc = "along",
label_dodge=unit(3,'mm'),
arrow=arrow(length=unit(4, 'mm')),
end_cap=circle(5, 'mm'))+
geom_node_point(aes_(color=~color, size=~size, shape=~shape),
show.legend=TRUE, alpha=0.4)+
scale_color_continuous(low=nodePal[1], high=nodePal[2], name=color,
na.value="transparent") +
scale_size(range=c(scaleSizePathLow,
scaleSizePathHigh) * cexCategory, name=sizeLab)+
scale_edge_width(range=c(1, 3), guide="none")+
scale_edge_color_continuous(low=edgePal[1], high=edgePal[2],
name="strength",
na.value="transparent")+
guides(edge_color = guide_edge_colorbar(title.vjust = 3))+
geom_node_text(aes_(label=~stringr::str_wrap(name, width = 25),
color=~color), check_overlap=TRUE,
nudge_y=0.2, repel=TRUE, fontface="bold",
family=fontFamily, size = labelSize) +
scale_shape_identity()+
theme_graph() +
theme(
text=element_text(size=16, family=fontFamily, color=textCol),
# plot.title = element_text(size=24,
# family=fontFamily, color = titleCol),
panel.background = element_blank(),
plot.background = element_rect(fill = backCol, colour = NA))
## Glowing phase
layers <- 10
size <- 8
edgeSize <- 0.01
glow_size <- 1.5
glow_edge_size <- 1.1
if (!is.null(hub)){
for (i in seq_len(layers+1)){
p <- p + geom_node_point(
aes_(
color=~cyberColor,
alpha=~cyberAlpha
),
fill=NA,
size=size+(glow_size*i))
}
}
if (!is.null(glowEdgeNum)){
for (i in seq_len(layers+1)){
p <- p + geom_edge_link(
position="identity",
aes_(edge_colour=~glowEdge,
edge_alpha=~alphaEdge),
width=edgeSize+(glow_edge_size*i),
arrow=arrow(length=unit(i*0.1, 'mm')),
end_cap=circle(5, 'mm')
)
}
}
p <- p+scale_alpha(range = c(0.01, 0.1), guide="none")+
scale_edge_alpha(range=c(0.01, 0.1),guide="none")
if (strengthPlot){
p <- p / stp + plot_layout(nrow=2, ncol=1, heights=c(0.6, 0.4))
}
if (returnNet){
returnList <- list()
returnList[["plot"]] <- p
returnList[["str"]] <- strength
returnList[["av"]] <- av
returnList[["df"]] <- pcs
return(returnList)
} else {
return(p)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.