Description Usage Arguments Value Examples
Computes the causal target parameter defined as the difference between the biomarker expression values under treatment and those same values under no treatment, using Targeted Minimum Loss Estimation.
1 2 3 4 5 6 7 8 9 10 11 12 |
se |
A |
varInt |
A |
normalized |
A |
ngscounts |
A |
bppar_type |
A parallelization option specified by |
bppar_debug |
A |
cv_folds |
A |
g_lib |
A |
Q_lib |
A |
... |
Additional arguments to be passed to |
S4 object of class biotmle
, inheriting from
SummarizedExperiment
, with additional slots tmleOut
and
call
, among others, containing TML estimates of the ATE of exposure
on biomarker expression.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | library(dplyr)
library(biotmleData)
library(SuperLearner)
library(SummarizedExperiment)
data(illuminaData)
colData(illuminaData) <- colData(illuminaData) %>%
data.frame() %>%
mutate(age = as.numeric(age > median(age))) %>%
DataFrame()
benz_idx <- which(names(colData(illuminaData)) %in% "benzene")
biomarkerTMLEout <- biomarkertmle(
se = illuminaData[1:2, ],
varInt = benz_idx,
bppar_type = BiocParallel::SerialParam(),
g_lib = c("SL.mean", "SL.glm"),
Q_lib = c("SL.mean", "SL.glm")
)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.