#' debrowserbatcheffect
#'
#' Module to correct batch effect
#'
#' @param input, input variables
#' @param output, output objects
#' @param session, session
#' @param ldata, loaded data
#' @return main plot
#'
#' @return panel
#' @export
#'
#' @examples
#' x <- debrowserbatcheffect()
#'
debrowserbatcheffect <- function(input, output, session, ldata = NULL) {
if(is.null(ldata)) return(NULL)
batchdata <- reactiveValues(count=NULL, meta = NULL)
observeEvent(input$submitBatchEffect, {
if (is.null(ldata$count)) return (NULL)
countData <- ldata$count
withProgress(message = 'Normalization', detail = "Normalization", value = NULL, {
if (input$norm_method != "none"){
countData <- getNormalizedMatrix(ldata$count, method=input$norm_method)
}
})
withProgress(message = 'Batch Effect Correction', detail = "Adjusting the Data", value = NULL, {
if (input$batchmethod == "Combat"){
batchdata$count <- correctCombat(input, countData, ldata$meta)
}
else if (input$batchmethod == "Harman"){
batchdata$count <- correctHarman(input, countData, ldata$meta)
}
else{
batchdata$count <- countData
}
})
batchdata$meta <- ldata$meta
})
output$batchfields <- renderUI({
if (!is.null(ldata$meta))
list( conditionalPanel(condition = paste0("input['", session$ns("batchmethod"),"']!='none'"),
selectGroupInfo( ldata$meta, input, session$ns("treatment"), "Treatment"),
selectGroupInfo( ldata$meta, input, session$ns("batch"), "Batch")))
})
batcheffectdata <- reactive({
ret <- NULL
if(!is.null(batchdata$count)){
ret <- batchdata
}
return(ret)
})
observe({
getSampleDetails(output, "uploadSummary", "sampleDetails", ldata)
getSampleDetails(output, "filteredSummary", "filteredDetails", batcheffectdata())
getTableDetails(output, session, "beforebatchtable", ldata$count, modal=TRUE)
callModule(debrowserpcaplot, "beforeCorrectionPCA", ldata$count, ldata$meta)
callModule(debrowserIQRplot, "beforeCorrectionIQR", ldata$count)
callModule(debrowserdensityplot, "beforeCorrectionDensity", ldata$count)
if ( !is.null(batcheffectdata()$count ) && nrow(batcheffectdata()$count)>2 ){
withProgress(message = 'Drawing the plot', detail = "Preparing!", value = NULL, {
getTableDetails(output, session, "afterbatchtable", batcheffectdata()$count, modal=TRUE)
callModule(debrowserpcaplot, "afterCorrectionPCA", batcheffectdata()$count, batcheffectdata()$meta)
callModule(debrowserIQRplot, "afterCorrectionIQR", batcheffectdata()$count)
callModule(debrowserdensityplot, "afterCorrectionDensity", batcheffectdata()$count)
})
}
})
list(BatchEffect=batcheffectdata)
}
#' batchEffectUI
#' Creates a panel to coorect batch effect
#'
#' @param id, namespace id
#' @return panel
#' @examples
#' x <- batchEffectUI("batcheffect")
#'
#' @export
#'
batchEffectUI <- function (id) {
ns <- NS(id)
list(
fluidRow(
shinydashboard::box(title = "Batch Effect Correction and Normalization",
solidHeader = T, status = "info", width = 12,
fluidRow(
column(5,div(style = 'overflow: scroll',
tableOutput(ns("uploadSummary")),
DT::dataTableOutput(ns("sampleDetails"))),
uiOutput(ns("beforebatchtable"))
),
column(2,
shinydashboard::box(title = "Options",
solidHeader = T, status = "info",
width = 12,
normalizationMethods(id),
batchMethod(id),
uiOutput(ns("batchfields")),
actionButton(ns("submitBatchEffect"), label = "Submit", styleclass = "primary")
)
),
column(5,div(style = 'overflow: scroll',
tableOutput(ns("filteredSummary")),
DT::dataTableOutput(ns("filteredDetails"))),
uiOutput(ns("afterbatchtable"))
)
),
conditionalPanel(condition = paste0("input['", ns("submitBatchEffect"),"']"),
actionButton("goDE", "Go to DE Analysis", styleclass = "primary"),
actionButton("goQCplots", "Go to QC plots", styleclass = "primary"))),
shinydashboard::box(title = "Plots",
solidHeader = T, status = "info", width = 12,
fluidRow(column(1, div()),
tabsetPanel( id = ns("batchTabs"),
tabPanel(id = ns("PCA"), "PCA",
column(5,
getPCAPlotUI(ns("beforeCorrectionPCA"))),
column(2,
shinydashboard::box(title = "PCA Controls",
solidHeader = T, status = "info", width = 12,
tabsetPanel( id = ns("pcacontrols"),
tabPanel ("Before",
pcaPlotControlsUI(ns("beforeCorrectionPCA"))),
tabPanel ( "After",
pcaPlotControlsUI(ns("afterCorrectionPCA")))))),
column(5,
getPCAPlotUI(ns("afterCorrectionPCA")))
),
tabPanel(id = ns("IQR"), "IQR",
column(5,
getIQRPlotUI(ns("beforeCorrectionIQR"))),
column(2, div()),
column(5,
getIQRPlotUI(ns("afterCorrectionIQR")))
),
tabPanel(id = ns("Density"), "Density",
column(5,
getDensityPlotUI(ns("beforeCorrectionDensity"))),
column(2, div()),
column(5,
getDensityPlotUI(ns("afterCorrectionDensity")))
)
)
)
)
), getPCAcontolUpdatesJS())
}
#' normalizationMethods
#'
#' Select box to select normalization method prior to batch effect correction
#'
#' @note \code{normalizationMethods}
#' @param id, namespace id
#' @return radio control
#'
#' @examples
#'
#' x <- normalizationMethods("batch")
#'
#' @export
#'
normalizationMethods <- function(id) {
ns <- NS(id)
selectInput(ns("norm_method"), "Normalization Method:",
choices = c("none", "MRN", "TMM", "RLE", "upperquartile"))
}
#' batchMethod
#'
#' select batch effect method
#' @param id, namespace id
#' @note \code{batchMethod}
#' @return radio control
#'
#' @examples
#'
#' x <- batchMethod("batch")
#'
#' @export
#'
batchMethod <- function(id) {
ns <- NS(id)
selectInput(ns("batchmethod"), "Correction Method:",
choices = c("none", "Combat", "Harman"),
selected='none'
)
}
#' Correct Batch Effect using Combat in sva package
#'
#' Batch effect correction
#' @param input, input values
#' @param idata, data
#' @param metadata, metadata
#' @return data
#' @export
#'
#' @examples
#' x<-correctCombat ()
correctCombat <- function (input = NULL, idata = NULL, metadata = NULL) {
if (is.null(idata) || input$batch == "None") return(NULL)
batch <- metadata[, input$batch]
treatment <- metadata[, input$treatment]
columns <- colnames(idata)
meta <- data.frame(cbind(columns, treatment, batch))
datacor <- data.frame(idata[, columns])
datacor[, columns] <- apply(datacor[, columns], 2,
function(x) as.integer(x))
datacor[, columns] <- apply(datacor[, columns], 2,
function(x) return(x + runif(1, 0, 0.01)))
modcombat = model.matrix(~1, data = meta)
combat_blind = sva::ComBat(dat=as.matrix(datacor), batch=batch)
a <- cbind(idata[rownames(combat_blind), 2], combat_blind)
a[, columns] <- apply(a[, columns], 2, function(x) ifelse(x<0, 0, x))
colnames(a[, 1]) <- colnames(idata[, 1])
a[,columns]
}
#' Correct Batch Effect using Harman
#'
#' Batch effect correction
#' @param input, input values
#' @param idata, data
#' @param metadata, metadata
#' @return data
#' @export
#'
#' @examples
#' x<-correctHarman ()
correctHarman <- function (input = NULL, idata = NULL, metadata = NULL) {
if (is.null(idata)) return(NULL)
batch.info <- data.frame(metadata[, c(input$treatment, input$batch)])
rownames(batch.info) <- rownames(metadata)
colnames(batch.info) <- c("treatment", "batch")
harman.res <- harman(idata, expt= batch.info$treatment, batch= batch.info$batch, limit=0.95)
harman.corrected <- reconstructData(harman.res)
harman.corrected
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.