test_that("candidate_search receives correct input arguments ", {
# Pass a numeric vector to the cadra_search and expect that it returns an error
expect_error(candidate_search(1:10))
})
test_that("candidate_search returns expected result ",{
# Load pre-computed feature set
data(sim_FS)
# Load pre-computed input-score
data(sim_Scores)
# Define additional parameters and run the function
result <- candidate_search(
FS = sim_FS,
input_score = sim_Scores,
method = "ks_pval",
method_alternative = "less",
weights = NULL,
search_start = NULL,
search_method = "both",
top_N = 1,
max_size = 7,
best_score_only = FALSE
)
testthat::expect_length(result, 1L)
testthat::expect_type(result, "list")
testthat::expect_length(result[[1]], 7L)
testthat::expect_s4_class(result[[1]][[1]], "SummarizedExperiment")
testthat::expect_length(result[[1]][[2]], 100L)
testthat::expect_equal(round(result[[1]][[2]][c(1:3, 100)],9),
c("1"=2.187332993, "2"=2.168955965,
"3"=2.050084686, "100"=-2.309168876))
testthat::expect_length(result[[1]][[3]], 1L)
testthat::expect_equal(round(result[[1]][[3]],5), c("TP_8"=14.13128))
# Run candidate_search with wilcox method
result <- candidate_search(
FS = sim_FS,
input_score = sim_Scores,
method = "wilcox_pval",
method_alternative = "less",
weights = NULL,
search_start = NULL,
search_method = "both",
top_N = 1,
max_size = 7,
best_score_only = FALSE
)
testthat::expect_length(result, 1L)
testthat::expect_type(result, "list")
testthat::expect_length(result[[1]], 7L)
testthat::expect_s4_class(result[[1]][[1]], "SummarizedExperiment")
testthat::expect_length(result[[1]][[2]], 100L)
testthat::expect_equal(round(result[[1]][[2]][c(1:3, 100)],6),
c("1"=2.187333, "2"=2.168956,
"3"=2.050085, "100"=-2.309169))
testthat::expect_length(result[[1]][[3]], 1L)
testthat::expect_equal(round(result[[1]][[3]],5), c("TN_129"=21.35299))
# Run candidate_search with revealer method
result <- suppressWarnings(
candidate_search(
FS = sim_FS,
input_score = sim_Scores,
method = "revealer",
method_alternative = "less",
weights = NULL,
search_start = NULL,
search_method = "both",
top_N = 1,
max_size = 7,
best_score_only = FALSE
)
)
testthat::expect_length(result, 1L)
testthat::expect_type(result, "list")
testthat::expect_length(result[[1]], 7L)
testthat::expect_s4_class(result[[1]][[1]], "SummarizedExperiment")
testthat::expect_length(result[[1]][[2]], 100L)
testthat::expect_equal(round(result[[1]][[2]][c(1:3, 100)], 6),
c("1"=2.187333, "2"=2.168956,
"3"=2.050085, "100"=-2.309169))
testthat::expect_length(result[[1]][[3]], 1L)
testthat::expect_equal(round(result[[1]][[3]], 5), c("TN_985"=0.37856))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.