#' CaDrA Search
#'
#' Perform permutation-based testings on a sample of permuted input scores
#' using \code{candidate_search} as the main iterative function for each run.
#'
#' @param FS a matrix of binary features or a SummarizedExperiment class object
#' from SummarizedExperiment package where rows represent features of interest
#' (e.g. genes, transcripts, exons, etc...) and columns represent the samples.
#' The assay of FS contains binary (1/0) values indicating the presence/absence
#' of omics features.
#' @param input_score a vector of continuous scores representing a phenotypic
#' readout of interest such as protein expression, pathway activity, etc.
#'
#' NOTE: \code{input_score} object must have names or labels that match
#' the column names of \code{FS} object.
#' @param method a character string specifies a scoring method that is
#' used in the search. There are 6 options: (\code{"ks_pval"} or \code{ks_score}
#' or \code{"wilcox_pval"} or \code{wilcox_score} or
#' \code{"revealer"} (conditional mutual information from REVEALER) or
#' \code{"custom"} (a user-defined scoring method)).
#' Default is \code{ks_pval}.
#' @param method_alternative a character string specifies an alternative
#' hypothesis testing (\code{"two.sided"} or \code{"greater"} or \code{"less"}).
#' Default is \code{less} for left-skewed significance testing.
#'
#' NOTE: This argument only applies to \code{ks_pval} and \code{wilcox_pval}
#' method
#' @param custom_function If method is \code{"custom"}, specifies
#' a user-defined function here. Default is \code{NULL}.
#'
#' NOTE: \code{custom_function} must take \code{FS} and \code{input_score}
#' as its input arguments and its final result must return a vector of row-wise
#' scores where its labels or names match the row names of \code{FS} object.
#' @param custom_parameters If method is \code{"custom"}, specifies a list of
#' additional arguments (excluding \code{FS} and \code{input_score}) to be
#' passed to \code{custom_function}. For example:
#' custom_parameters = list(alternative = "less"). Default is \code{NULL}.
#' @param weights If method is \code{ks_score} or \code{ks_pval}, specifying a
#' vector of weights will perform a weighted-KS testing. Default is \code{NULL}.
#'
#' NOTE: \code{weights} must have names or labels that match the labels of
#' \code{input_score}.
#' @param search_start a vector of character strings (separated by commas)
#' specifies feature names in the FS object to start the search with.
#' If \code{search_start} is provided, then \code{top_N} parameter will be
#' ignored and vice versa. Default is \code{NULL}.
#' @param top_N an integer specifies the number of features to start the
#' search over. By default, it starts with the feature that has the highest
#' best score (top_N = 1).
#'
#' NOTE: If \code{top_N} is provided, then \code{search_start} parameter
#' will be ignored and vice versa. If top_N > 10, it may result in a longer
#' search time.
#' @param search_method a character string specifies an algorithm to filter out
#' the best candidates (\code{"forward"} or \code{"both"}). Default is
#' \code{both} (i.e., backward and forward).
#' @param max_size an integer specifies a maximum size that a meta-feature can
#' extend to do for a given search. Default is \code{7}.
#' @param n_perm an integer specifies the number of permutations to perform.
#' Default is \code{1000}.
#' @param perm_alternative an alternative hypothesis type for calculating
#' permutation-based p-value. Options: one.sided, two.sided. Default is
#' \code{one.sided}.
#' @param obs_best_score a numeric value corresponding to the best observed
#' score. This value is used to compare against the \code{n_perm} calculated best
#' scores. Default is \code{NULL}. If set to NULL, we will compute the observed
#' best score based on the given parameters.
#' @param smooth a logical value indicates whether or not to add a smoothing
#' factor of 1 to the calculation of permutation-based p-value. This option is
#' used to avoid a returned p-value of 0. Default is \code{TRUE}.
#' @param plot a logical value indicates whether or not to plot the empirical
#' null distribution of the permuted best scores. Default is \code{FALSE}.
#' @param ncores an integer specifies the number of cores to perform
#' parallelization for permutation-based testing. Default is \code{1}.
#' @param cache a logical value determines whether or not to cache the
#' permuted best scores. This helps to save time for future loading instead
#' of re-computing the permutation-based testing every time.
#' Default is \code{FALSE}.
#' @param cache_path a path to cache permuted best scores. Default is \code{NULL}.
#' If NULL, the cache path is set to system home directory
#' (e.g. \code{$HOME/.Rcache}) for future loading.
#' @param verbose a logical value indicates whether or not to print the
#' diagnostic messages. Default is \code{FALSE}.
#'
#' @return a list of 4 objects: \code{key}, \code{perm_best_scores},
#' \code{obs_best_score}, \code{perm_pval}
#'
#' -\code{key}: a list of parameters that was used to cache the
#' results of the permutation-based testing. This is useful as the
#' permuted best scores can be recycled to save time for future loading.
#'
#' -\code{perm_best_scores}: a vector of permuted best scores obtained
#' by performing \code{candidate_search} over \code{n_perm} iterations of
#' permuted input scores.
#'
#' -\code{obs_best_score}: a user-provided best score or an observed best score
#' obtained by performing \code{candidate_search} on a given dataset and input
#' parameters. This value is later used to compare against the permuted best
#' scores (\code{perm_best_scores}).
#'
#' \code{perm_pval}: a permutation-based p-value obtained by calculating
#' sum(perm_best_scores > obs_best_score)/n_perm
#'
#' NOTE: If smooth = TRUE, a smoothing factor of 1 will be added to the
#' calculation of \code{perm_pval}.
#'
#' e.g. (sum(perm_best_scores > obs_best_score) + 1) / (n_perm + c)
#'
#' This is just to not return a p-value of 0
#'
#' @examples
#'
#' # Load pre-computed feature set
#' data(sim_FS)
#'
#' # Load pre-computed input-score
#' data(sim_Scores)
#'
#' # Set seed for permutation
#' set.seed(21)
#'
#' # Define additional parameters and start the function
#' cadra_result <- CaDrA(
#' FS = sim_FS, input_score = sim_Scores, method = "ks_pval",
#' weights = NULL, method_alternative = "less", top_N = 1,
#' search_start = NULL, search_method = "both", max_size = 7,
#' n_perm = 10, perm_alternative = "one.sided", plot = FALSE,
#' smooth = TRUE, obs_best_score = NULL,
#' ncores = 1, cache = FALSE, cache_path = NULL
#' )
#'
#' @export
#' @import R.cache doParallel ggplot2 plyr methods SummarizedExperiment
#'
CaDrA <- function(
FS,
input_score,
method = c("ks_pval", "ks_score", "wilcox_pval", "wilcox_score",
"revealer", "custom"),
method_alternative = c("less", "greater", "two.sided"),
custom_function = NULL,
custom_parameters = NULL,
weights = NULL,
search_start = NULL,
top_N = 1,
search_method = c("both", "forward"),
max_size = 7,
n_perm = 1000,
perm_alternative = c("one.sided", "two.sided"),
obs_best_score = NULL,
smooth = TRUE,
plot = FALSE,
ncores = 1,
cache = FALSE,
cache_path = NULL,
verbose = FALSE
){
# Set up verbose option
options(verbose = verbose)
# Match arguments
method <- match.arg(method)
method_alternative <- match.arg(method_alternative)
search_method <- match.arg(search_method)
perm_alternative <- match.arg(perm_alternative)
# Check n_perm
stopifnot("invalid number of permutations (nperm)"=
(length(n_perm)==1 && !is.na(n_perm) &&
is.numeric(n_perm) && n_perm > 0) )
# Check ncores
stopifnot("invalid number of CPU cores (ncores)"=
(length(ncores)==1 && !is.na(ncores) &&
is.numeric(ncores) && ncores > 0) )
# Retrieve the original class object of feature set
# If FS is a SummarizedExperiment, convert it to a matrix object
# used its matrix form as a default caching key
if(is(FS, "SummarizedExperiment"))
FS <- SummarizedExperiment::assay(FS)
# Define the key for each cached result
key <- list(FS = FS,
input_score = if(method %in% c("revealer", "custom"))
{ input_score } else { NULL },
method = method,
method_alternative = method_alternative,
custom_function = custom_function,
custom_parameters = custom_parameters,
weights = weights,
top_N = top_N,
search_start = search_start,
search_method = search_method,
max_size = max_size)
####### CACHE CHECKING #######
# Set cache root path
if(is.null(cache_path)){
cache_path <- file.path(Sys.getenv("HOME"), ".Rcache")
dir.create(cache_path, showWarnings = FALSE)
}
R.cache::setCacheRootPath(cache_path)
if(cache == TRUE){
message("Setting cache root path as: ", cache_path, "\n")
# Load perm_best_scores with the given key parameters
perm_best_scores <- R.cache::loadCache(key)
}else{
perm_best_scores <- NULL
}
# Start the 'clock' to see how long the process takes
ptm <- proc.time()
# Check if, given the dataset and search-specific parameters,
# there is already a cached null distribution available
n_perm <- as.integer(n_perm)
if(!is.null(perm_best_scores) & (length(perm_best_scores) >= n_perm)){
if(length(perm_best_scores) == n_perm){
verbose("Found ", length(perm_best_scores),
" permutated scores for the specified dataset",
" and search parameters in cache path\n")
verbose("LOADING PERMUTATED SCORES FROM CACHE\n")
}else{
verbose("n_perm is set to ", n_perm, " but found ",
length(perm_best_scores),
" permutated scores for the specified dataset",
" and search parameters in cache path\n")
verbose("LOADING LARGER PERMUTATED SCORES FROM CACHE\n")
}
}else{
if(is.null(perm_best_scores)){
verbose("No permutated scores for the specified dataset and ",
"search parameters were found in cache path\n")
verbose("BEGINNING PERMUTATION-BASED TESTINGS\n")
}else if (length(perm_best_scores) < n_perm) {
verbose("n_perm is set to ", n_perm, " but found only ",
length(perm_best_scores),
" permutated scores for the specified dataset",
" and search parameters in cache path\n")
verbose("RE-COMPUTE PERMUTATION-BASED TESTINGS ",
"WITH LARGER NUMBER OF PERMUTATIONS\n")
}
#######################################################################
# Check ncores
ncores <- as.integer(ncores)
# Sets up the parallel backend which will be utilized by Plyr.
parallel <- FALSE
progress <- "text"
if(ncores > 1){
doParallel::registerDoParallel(cores = ncores)
parallel <- TRUE
progress <- "none"
verbose("Running tests in parallel...")
}
# Generate matrix of permuted input_score
perm_labels_matrix <- generate_permutations(
input_score = input_score,
n_perm = n_perm
)
# Run permutation-based testing
perm_best_scores_l <- plyr::alply(
perm_labels_matrix,
1,
function(x){
perm_input_score <- x
names(perm_input_score) <- colnames(perm_labels_matrix)
best_score <- candidate_search(
FS = FS,
input_score = perm_input_score,
method = method,
custom_function = custom_function,
custom_parameters = custom_parameters,
method_alternative = method_alternative,
weights = weights,
top_N = top_N,
search_start = search_start,
search_method = search_method,
max_size = max_size,
best_score_only = TRUE,
do_plot = FALSE,
verbose = FALSE
)
return(best_score)
},
.parallel = parallel,
.progress = progress)
# Set up verbose option
options(verbose = verbose)
# Extract the permuted best scores
perm_best_scores <- lapply(
seq_along(perm_best_scores_l),
function(l){ perm_best_scores_l[[l]] }) |> unlist()
# Save computed scores to cache
verbose("Saving to cache...\n")
R.cache::saveCache(perm_best_scores, key=key)
} # end caching else statement block
# Return to using just a single core
doParallel::registerDoParallel(cores = 1)
verbose("FINISHED\n")
verbose("Time elapsed: ", round((proc.time()-ptm)[3]/60, 2), " mins \n\n")
#########################################################################
if(is.null(obs_best_score)){
verbose("Computing observed best score...\n\n")
obs_best_score <- candidate_search(
FS = FS,
input_score = input_score,
method = method,
custom_function = custom_function,
custom_parameters = custom_parameters,
method_alternative = method_alternative,
weights = weights,
top_N = top_N,
search_start = search_start,
search_method = search_method,
max_size = max_size,
best_score_only = TRUE,
do_plot = FALSE,
verbose = FALSE
) |> unlist()
}else{
# Check obs_best_score
stopifnot("Invalid observed best score (obs_best_score)"=
(length(obs_best_score)==1 && !is.na(obs_best_score) &&
is.numeric(obs_best_score)))
verbose("Using provided value of observed best score...\n")
obs_best_score <- as.numeric(obs_best_score)
}
# Set up verbose option
options(verbose = verbose)
verbose("Observed score: ", obs_best_score, "\n")
########### PERMUTATION P-VALUE COMPUTATION ############
#Add a smoothing factor of 1 if smooth is specified
#This is just to not return a p-value of 0
c <- 0
if(smooth) c <- 1
onesided_perm_pval <- (sum(perm_best_scores > obs_best_score) + c)/
(length(perm_best_scores) + c)
if(perm_alternative == "two.sided"){
perm_pval <- 2*min(onesided_perm_pval, 1-onesided_perm_pval)
}else{
perm_pval <- onesided_perm_pval
}
verbose("Permutation p-value: ", perm_pval, "\n")
verbose("Number of permutations: ", length(perm_best_scores), "\n")
########### END PERMUTATION P-VALUE COMPUTATION ############
perm_res <- list(
key = key,
perm_best_scores = perm_best_scores,
obs_best_score = obs_best_score,
perm_pval = perm_pval
)
# If plot = TRUE, produce the permutation plot
if(plot == TRUE){
permutation_plot(perm_res = perm_res)
}
return(perm_res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.