#' @title Partitioning Around Medoids Clustering Learner
#'
#' @name mlr_learners_clust.pam
#'
#' @description
#' A [LearnerClust] for PAM clustering implemented in [cluster::pam()].
#' [cluster::pam()] doesn't have a default value for the number of clusters.
#' Therefore, the `k` parameter which corresponds to the number
#' of clusters here is set to 2 by default.
#' The predict method uses [clue::cl_predict()] to compute the
#' cluster memberships for new data.
#'
#' @templateVar id clust.pam
#' @template learner
#'
#' @references
#' `r format_bib("reynolds2006clustering", "schubert2019faster")`
#'
#' @export
#' @template seealso_learner
#' @template example
LearnerClustPAM = R6Class("LearnerClustPAM",
inherit = LearnerClust,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function() {
param_set = ps(
k = p_int(1L, tags = c("required", "train")),
metric = p_fct(levels = c("euclidian", "manhattan"), tags = "train"),
medoids = p_uty(
default = NULL, tags = "train", custom_check = crate(function(x) check_integerish(x, null.ok = TRUE))
),
stand = p_lgl(default = FALSE, tags = "train"),
do.swap = p_lgl(default = TRUE, tags = "train"),
pamonce = p_int(0L, 5L, default = 0L, tags = "train"),
trace.lev = p_int(0L, default = 0L, tags = "train")
)
param_set$set_values(k = 2L)
super$initialize(
id = "clust.pam",
feature_types = c("logical", "integer", "numeric"),
predict_types = "partition",
param_set = param_set,
properties = c("partitional", "exclusive", "complete"),
packages = "cluster",
man = "mlr3cluster::mlr_learners_clust.pam",
label = "Partitioning Around Medoids"
)
}
),
private = list(
.train = function(task) {
pv = self$param_set$get_values(tags = "train")
if (!is.null(pv$medoids)) {
if (length(pv$medoids) != pv$k) {
stopf("number of `medoids`' needs to match `k`!")
}
if (sum(pv$medoids <= task$nrow & pv$medoids >= 1L) != pv$k) {
stopf(
"`medoids` need to contain valid indices from 1 to %i (number of observations)!", pv$k
)
}
}
m = invoke(cluster::pam, x = task$data(), diss = FALSE, .args = pv)
if (self$save_assignments) {
self$assignments = m$clustering
}
m
},
.predict = function(task) {
partition = unclass(invoke(cl_predict, self$model, newdata = task$data(), type = "class_ids"))
PredictionClust$new(task = task, partition = partition)
}
)
)
#' @include zzz.R
register_learner("clust.pam", LearnerClustPAM)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.