mlr_learners_clust.SimpleKMeans: K-Means Clustering Learner from Weka

mlr_learners_clust.SimpleKMeansR Documentation

K-Means Clustering Learner from Weka

Description

A LearnerClust for Simple K Means clustering implemented in RWeka::SimpleKMeans(). The predict method uses RWeka::predict.Weka_clusterer() to compute the cluster memberships for new data.

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("clust.SimpleKMeans")
lrn("clust.SimpleKMeans")

Meta Information

  • Task type: “clust”

  • Predict Types: “partition”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3cluster, RWeka

Parameters

Id Type Default Levels Range
A untyped "weka.core.EuclideanDistance" -
C logical FALSE TRUE, FALSE -
fast logical FALSE TRUE, FALSE -
I integer 100 [1, \infty)
init integer 0 [0, 3]
M logical FALSE TRUE, FALSE -
max_candidates integer 100 [1, \infty)
min_density integer 2 [1, \infty)
N integer 2 [1, \infty)
num_slots integer 1 [1, \infty)
O logical FALSE TRUE, FALSE -
periodic_pruning integer 10000 [1, \infty)
S integer 10 [0, \infty)
t2 numeric -1 (-\infty, \infty)
t1 numeric -1.5 (-\infty, \infty)
V logical FALSE TRUE, FALSE -
output_debug_info logical FALSE TRUE, FALSE -

Super classes

mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustSimpleKMeans

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerClustSimpleKMeans$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerClustSimpleKMeans$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

References

Witten, H I, Frank, Eibe (2002). “Data mining: practical machine learning tools and techniques with Java implementations.” Acm Sigmod Record, 31(1), 76–77.

Forgy, W E (1965). “Cluster analysis of multivariate data: efficiency versus interpretability of classifications.” Biometrics, 21, 768–769.

Lloyd, P S (1982). “Least squares quantization in PCM.” IEEE Transactions on Information Theory, 28(2), 129–137.

MacQueen, James (1967). “Some methods for classification and analysis of multivariate observations.” In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, volume 1, 281–297.

See Also

Other Learner: mlr_learners_clust.MBatchKMeans, mlr_learners_clust.agnes, mlr_learners_clust.ap, mlr_learners_clust.bico, mlr_learners_clust.birch, mlr_learners_clust.cmeans, mlr_learners_clust.cobweb, mlr_learners_clust.dbscan, mlr_learners_clust.dbscan_fpc, mlr_learners_clust.diana, mlr_learners_clust.em, mlr_learners_clust.fanny, mlr_learners_clust.featureless, mlr_learners_clust.ff, mlr_learners_clust.hclust, mlr_learners_clust.hdbscan, mlr_learners_clust.kkmeans, mlr_learners_clust.kmeans, mlr_learners_clust.mclust, mlr_learners_clust.meanshift, mlr_learners_clust.optics, mlr_learners_clust.pam, mlr_learners_clust.xmeans

Examples

if (requireNamespace("RWeka")) {
  learner = mlr3::lrn("clust.SimpleKMeans")
  print(learner)

  # available parameters:
  learner$param_set$ids()
}

mlr-org/mlr3cluster documentation built on Dec. 24, 2024, 3:19 a.m.