#' @title Mean Shift Clustering Learner
#'
#' @name mlr_learners_clust.meanshift
#'
#' @description
#' A [LearnerClust] for Mean Shift clustering implemented in [LPCM::ms()].
#' There is no predict method for [`LPCM::ms()`], so the method
#' returns cluster labels for the 'training' data.
#'
#' @templateVar id clust.meanshift
#' @template learner
#'
#' @references
#' `r format_bib("cheng1995mean")`
#'
#' @export
#' @template seealso_learner
#' @template example
LearnerClustMeanShift = R6Class("LearnerClustMeanShift",
inherit = LearnerClust,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function() {
param_set = ps(
h = p_uty(tags = "train", custom_check = crate(function(x) {
if (test_numeric(x) || test_int(x)) {
TRUE
} else {
"`h` must be either integer or numeric vector"
}
})),
subset = p_uty(tags = "train", custom_check = check_numeric),
scaled = p_int(0L, default = 1, tags = "train"),
iter = p_int(1L, default = 200L, tags = "train"),
thr = p_dbl(default = 0.01, tags = "train")
)
super$initialize(
id = "clust.meanshift",
feature_types = c("logical", "integer", "numeric"),
predict_types = "partition",
param_set = param_set,
properties = c("partitional", "exclusive", "complete"),
packages = "LPCM",
man = "mlr3cluster::mlr_learners_clust.meanshift",
label = "Mean Shift Clustering"
)
}
),
private = list(
.train = function(task) {
pv = self$param_set$get_values(tags = "train")
if (!is.null(pv$subset) && length(pv$subset) > task$nrow) {
stopf("`subset` length must be less than or equal to number of observations in task.")
}
m = invoke(LPCM::ms, X = task$data(), .args = pv)
if (self$save_assignments) {
self$assignments = m$cluster.label
}
m
},
.predict = function(task) {
warn_prediction_useless(self$id)
partition = as.integer(self$model$cluster.label)
PredictionClust$new(task = task, partition = partition)
}
)
)
#' @include zzz.R
register_learner("clust.meanshift", LearnerClustMeanShift)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.