#' @title Agglomerative Hierarchical Clustering Learner
#'
#' @name mlr_learners_clust.hclust
#'
#' @description
#' A [LearnerClust] for agglomerative hierarchical clustering implemented in [stats::hclust()].
#' Difference Calculation is done by [stats::dist()]
#'
#' @templateVar id clust.hclust
#' @template learner
#'
#' @references
#' `r format_bib("becker1988s", "everitt1974cluster", "hartigan1975clustering", "sneath1973numerical", "anderberg1973cluster", "gordon1999classification", "murtagh1985multidimensional", "mcquitty1966similarity", "legendre2012numerical", "murtagh2014ward")`
#'
#' @export
#' @template seealso_learner
#' @template example
LearnerClustHclust = R6Class("LearnerClustHclust",
inherit = LearnerClust,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function() {
param_set = ps(
method = p_fct(
default = "complete",
levels = c("ward.D", "ward.D2", "single", "complete", "average", "mcquitty", "median", "centroid"),
tags = c("train", "hclust")
),
members = p_uty(default = NULL, tags = c("train", "hclust")),
distmethod = p_fct(
default = "euclidean", levels = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"),
tags = "train"
),
diag = p_lgl(default = FALSE, tags = c("train", "dist")),
upper = p_lgl(default = FALSE, tags = c("train", "dist")),
p = p_dbl(default = 2, tags = c("train", "dist"), depends = quote(distmethod == "minkowski")),
k = p_int(1L, default = 2L, tags = c("train", "predict"))
)
param_set$set_values(k = 2L, distmethod = "euclidean")
super$initialize(
id = "clust.hclust",
feature_types = c("logical", "integer", "numeric"),
predict_types = "partition",
param_set = param_set,
properties = c("hierarchical", "exclusive", "complete"),
packages = "stats",
man = "mlr3cluster::mlr_learners_clust.hclust",
label = "Agglomerative Hierarchical Clustering"
)
}
),
private = list(
.train = function(task) {
pv = self$param_set$get_values(tags = "train")
dist = invoke(stats::dist,
x = task$data(),
method = pv$d %??% "euclidean",
.args = self$param_set$get_values(tags = c("train", "dist"))
)
m = invoke(stats::hclust,
d = dist,
.args = self$param_set$get_values(tags = c("train", "hclust"))
)
if (self$save_assignments) {
self$assignments = stats::cutree(m, pv$k)
}
m
},
.predict = function(task) {
pv = self$param_set$get_values(tags = "predict")
if (pv$k > task$nrow) {
stopf("`k` needs to be between 1 and %i.", task$nrow)
}
warn_prediction_useless(self$id)
PredictionClust$new(task = task, partition = self$assignments)
}
)
)
#' @include zzz.R
register_learner("clust.hclust", LearnerClustHclust)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.