#' @title Expectation-Maximization Clustering Learner
#'
#' @name mlr_learners_clust.em
#'
#' @description
#' A [LearnerClust] for Expectation-Maximization clustering implemented in
#' [RWeka::list_Weka_interfaces()].
#' The predict method uses [RWeka::predict.Weka_clusterer()] to compute the
#' cluster memberships for new data.
#'
#' @templateVar id clust.em
#' @template learner
#'
#' @references
#' `r format_bib("witten2002data", "dempster1977maximum")`
#'
#' @export
#' @template seealso_learner
#' @template example
LearnerClustEM = R6Class("LearnerClustEM",
inherit = LearnerClust,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function() {
param_set = ps(
I = p_int(1L, default = 100L, tags = "train"),
ll_cv = p_dbl(1e-6, default = 1e-6, tags = "train"),
ll_iter = p_dbl(1e-6, default = 1e-6, tags = "train"),
M = p_dbl(1e-6, default = 1e-6, tags = "train"),
max = p_int(-1L, default = -1L, tags = "train"),
N = p_int(-1L, default = -1L, tags = "train"),
num_slots = p_int(1L, default = 1L, tags = "train"),
S = p_int(0L, default = 100L, tags = "train"),
X = p_int(1L, default = 10L, tags = "train"),
K = p_int(1L, default = 10L, tags = "train"),
V = p_lgl(default = FALSE, tags = "train"),
output_debug_info = p_lgl(default = FALSE, tags = "train")
)
super$initialize(
id = "clust.em",
feature_types = c("logical", "integer", "numeric"),
predict_types = "partition",
param_set = param_set,
properties = c("partitional", "exclusive", "complete"),
packages = "RWeka",
man = "mlr3cluster::mlr_learners_clust.em",
label = "Expectation-Maximization Clustering"
)
}
),
private = list(
.train = function(task) {
pv = self$param_set$get_values(tags = "train")
names(pv) = chartr("_", "-", names(pv))
ctrl = invoke(RWeka::Weka_control, .args = pv)
m = invoke(RWeka::make_Weka_clusterer("weka/clusterers/EM"), x = task$data(), control = ctrl)
if (self$save_assignments) {
self$assignments = unname(m$class_ids + 1L)
}
m
},
.predict = function(task) {
partition = invoke(predict, self$model, newdata = task$data(), type = "class") + 1L
PredictionClust$new(task = task, partition = partition)
}
)
)
#' @include zzz.R
register_learner("clust.em", LearnerClustEM)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.