#' @title Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner
#'
#' @name mlr_learners_clust.dbscan_fpc
#'
#' @description
#' DBSCAN (Density-based spatial clustering of applications with noise) clustering.
#' Calls [fpc::dbscan()] from \CRANpkg{fpc}.
#'
#' @templateVar id clust.dbscan_fpc
#' @template learner
#'
#' @references
#' `r format_bib("ester1996density")`
#'
#' @export
#' @template seealso_learner
#' @template example
LearnerClustDBSCANfpc = R6Class("LearnerClustDBSCANfpc",
inherit = LearnerClust,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function() {
param_set = ps(
eps = p_dbl(0, tags = c("required", "train")),
MinPts = p_int(0L, default = 5L, tags = "train"),
scale = p_lgl(default = FALSE, tags = "train"),
method = p_fct(levels = c("hybrid", "raw", "dist"), tags = "train"),
seeds = p_lgl(default = TRUE, tags = "train"),
showplot = p_uty(default = FALSE, tags = "train", custom_check = crate(function(x) {
if (test_flag(x) || test_int(x, lower = 0L, upper = 2L)) {
TRUE
} else {
"`showplot` need to be either logical or integer between 0 and 2"
}
})),
countmode = p_uty(default = NULL, tags = "train", custom_check = crate(function(x) {
if (test_integer(x, null.ok = TRUE)) {
TRUE
} else {
"`countmode` need to be NULL or vector of integers"
}
}))
)
param_set$set_values(
MinPts = 5L, scale = FALSE, seeds = TRUE, showplot = FALSE, countmode = NULL
)
super$initialize(
id = "clust.dbscan_fpc",
packages = "fpc",
feature_types = c("logical", "integer", "numeric"),
predict_types = "partition",
param_set = param_set,
properties = c("density", "exclusive", "complete"),
man = "mlr3cluster::mlr_learners_clust.dbscan_fpc",
label = "Density-Based Clustering with fpc"
)
}
),
private = list(
.train = function(task) {
pv = self$param_set$get_values(tags = "train")
data = task$data()
m = invoke(fpc::dbscan, data = data, .args = pv)
m = insert_named(m, list(data = data))
if (self$save_assignments) {
self$assignments = m$cluster
}
m
},
.predict = function(task) {
partition = as.integer(invoke(predict, self$model, data = self$model$data), newdata = task$data())
PredictionClust$new(task = task, partition = partition)
}
)
)
#' @include zzz.R
register_learner("clust.dbscan_fpc", LearnerClustDBSCANfpc)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.