#' @title Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner
#'
#' @name mlr_learners_clust.dbscan
#'
#' @description
#' DBSCAN (Density-based spatial clustering of applications with noise) clustering.
#' Calls [dbscan::dbscan()] from \CRANpkg{dbscan}.
#'
#' @templateVar id clust.dbscan
#' @template learner
#'
#' @references
#' `r format_bib("hahsler2019dbscan", "ester1996density")`
#'
#' @export
#' @template seealso_learner
#' @template example
LearnerClustDBSCAN = R6Class("LearnerClustDBSCAN",
inherit = LearnerClust,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function() {
param_set = ps(
eps = p_dbl(0, tags = c("required", "train")),
minPts = p_int(0L, default = 5L, tags = "train"),
borderPoints = p_lgl(default = TRUE, tags = "train"),
weights = p_uty(tags = "train", custom_check = check_numeric),
search = p_fct(levels = c("kdtree", "linear", "dist"), default = "kdtree", tags = "train"),
bucketSize = p_int(1L, default = 10L, tags = "train", depends = quote(search == "kdtree")),
splitRule = p_fct(
levels = c("STD", "MIDPT", "FAIR", "SL_MIDPT", "SL_FAIR", "SUGGEST"),
default = "SUGGEST",
tags = "train",
depends = quote(search == "kdtree")
),
approx = p_dbl(default = 0, tags = "train")
)
super$initialize(
id = "clust.dbscan",
feature_types = c("logical", "integer", "numeric"),
predict_types = "partition",
param_set = param_set,
properties = c("density", "exclusive", "complete"),
packages = "dbscan",
man = "mlr3cluster::mlr_learners_clust.dbscan",
label = "Density-Based Clustering"
)
}
),
private = list(
.train = function(task) {
pv = self$param_set$get_values(tags = "train")
data = task$data()
m = invoke(dbscan::dbscan, x = data, .args = pv)
m = insert_named(m, list(data = data))
if (self$save_assignments) {
self$assignments = m$cluster
}
m
},
.predict = function(task) {
partition = invoke(predict, self$model, newdata = task$data(), data = self$model$data)
PredictionClust$new(task = task, partition = partition)
}
)
)
#' @include zzz.R
register_learner("clust.dbscan", LearnerClustDBSCAN)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.