#' @title Agglomerative Hierarchical Clustering Learner
#'
#' @name mlr_learners_clust.agnes
#'
#' @description
#' A [LearnerClust] for agglomerative hierarchical clustering implemented in [cluster::agnes()].
#' The predict method uses [stats::cutree()] which cuts the tree resulting from
#' hierarchical clustering into specified number of groups (see parameter `k`).
#' The default number for `k` is 2.
#'
#' @templateVar id clust.agnes
#' @template learner
#'
#' @references
#' `r format_bib("kaufman2009finding")`
#'
#' @export
#' @template seealso_learner
#' @template example
LearnerClustAgnes = R6Class("LearnerClustAgnes",
inherit = LearnerClust,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function() {
param_set = ps(
metric = p_fct(default = "euclidean", levels = c("euclidean", "manhattan"), tags = "train"),
stand = p_lgl(default = FALSE, tags = "train"),
method = p_fct(
default = "average",
levels = c("average", "single", "complete", "ward", "weighted", "flexible", "gaverage"),
tags = "train"
),
trace.lev = p_int(0L, default = 0L, tags = "train"),
k = p_int(1L, default = 2L, tags = c("train", "predict")),
par.method = p_uty(
tags = "train",
depends = quote(method %in% c("flexible", "gaverage")),
custom_check = crate(function(x) {
if (!(test_numeric(x) || test_list(x))) {
return("`par.method` needs to be a numeric vector")
}
if (length(x) %in% c(1L, 3L, 4L)) {
TRUE
} else {
"`par.method` needs be of length 1, 3, or 4"
}
})
)
)
param_set$set_values(k = 2L)
super$initialize(
id = "clust.agnes",
feature_types = c("logical", "integer", "numeric"),
predict_types = "partition",
param_set = param_set,
properties = c("hierarchical", "exclusive", "complete"),
packages = "cluster",
man = "mlr3cluster::mlr_learners_clust.agnes",
label = "Agglomerative Hierarchical Clustering"
)
}
),
private = list(
.train = function(task) {
pv = self$param_set$get_values(tags = "train")
m = invoke(cluster::agnes,
x = task$data(),
diss = FALSE,
.args = remove_named(pv, "k")
)
if (self$save_assignments) {
self$assignments = stats::cutree(m, pv$k)
}
m
},
.predict = function(task) {
pv = self$param_set$get_values(tags = "predict")
if (pv$k > task$nrow) {
stopf("`k` needs to be between 1 and %i.", task$nrow)
}
warn_prediction_useless(self$id)
PredictionClust$new(task = task, partition = self$assignments)
}
)
)
#' @include zzz.R
register_learner("clust.agnes", LearnerClustAgnes)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.