tests/testthat/test_correlation.R

context("correlation")
library(SummarizedExperiment)
library(fishpond)

test_that("swish can detect correlations with log counts", {

  set.seed(1)

  n <- 20
  m <- 250
  y <- makeSimSwishData(m=m, n=n, null=TRUE)
  nms <- c("counts",paste0("infRep",1:20))
  lambda1 <- exp(seq(4, 5, length.out=n))
  lambda2 <- rev(lambda1)
  y$condition <- sort(runif(n,0,0.1))
  for (a in nms) {
    assays(y)[[a]][1,] <- rpois(n,lambda1)
    assays(y)[[a]][2,] <- rpois(n,lambda2)
  }
  y <- scaleInfReps(y, quiet=TRUE)
  y <- labelKeep(y)
  y <- computeInfRV(y)

  y <- swish(y, x="condition", cor="spearman", nperms=30)
  #hist(mcols(y)$pvalue)
  #plot(-log10(mcols(y)$pvalue[1:30]))
  mcols(y)[1:4,]
  mcols(y)[1,"log2FC"]
  coef(lm(log2(lambda1) ~ y$condition))[[2]]
  #plotInfReps(y, idx=1, x="condition")

  y <- swish(y, x="condition", cor="pearson", nperms=30)
  #hist(mcols(y)$pvalue)
  #plot(-log10(mcols(y)$pvalue[1:30]))
  mcols(y)[1:4,]

  ### correlation with a log fold change ###
  
  set.seed(5)

  n <- 20
  y <- makeSimSwishData(m=m, n=n, null=TRUE)
  nms <- c("counts",paste0("infRep",1:20))
  lambda1 <- exp(seq(4, 5, length.out=n/2))
  lambda2 <- rev(lambda1)
  ar <- log2(lambda1/lambda2) # the allelic ratio for gene 1
  y$condition <- factor(rep(c("a2","a1"),each=n/2), levels=c("a2","a1"))
  y$pair <- rep(1:(n/2),2)
  cov <- sort(runif(n/2,0,0.1)) # the numeric covariate
  y$cov <- rep(cov,2)
  for (a in nms) {
    assays(y)[[a]][1,] <- rpois(n,c(lambda2,lambda1))
    assays(y)[[a]][2,] <- rpois(n,c(lambda1,lambda2))
  }

  # note: for AI analysis, do not use scaling!
  y <- scaleInfReps(y, quiet=TRUE)
  y <- labelKeep(y)
  y <- computeInfRV(y)

  y <- swish(y, x="condition", pair="pair",
             cov="cov", cor="pearson", nperms=30)
  #hist(mcols(y)$pvalue)
  #plot(-log10(mcols(y)$pvalue[1:30]))
  mcols(y)[1:4,]

  y <- swish(y, x="condition", pair="pair",
             cov="cov", cor="spearman", nperms=30)
  #hist(mcols(y)$pvalue)
  #plot(-log10(mcols(y)$pvalue[1:30]))
  mcols(y)[1:4,]
  
  plotInfReps(y, 1, x="cov", cov="condition",
              shiftX=.0005,
              legend=TRUE, legendPos="top")
  dev.off()
  
  ### up-down-up pattern ###

  set.seed(1)

  n <- 40
  y <- makeSimSwishData(m=m, n=n, null=TRUE)
  nms <- c("counts",paste0("infRep",1:20))
  cov <- rep(1:(n/4),each=2)
  lambda1 <- (cov - 1)*(cov - 10)*(cov - 10) + 100
  lambda2 <- -1*(cov - 1)*(cov - 1)*(cov - 10) + 100
  ar <- log2(lambda1/lambda2) # the allelic ratio for gene 1
  y$condition <- factor(rep(c("a2","a1"),each=n/2), levels=c("a2","a1"))
  y$pair <- rep(1:(n/2),2)
  y$cov <- rep(cov,2)
  for (a in nms) {
    assays(y)[[a]][1,] <- rpois(n,c(lambda2,lambda1))
    assays(y)[[a]][2,] <- rpois(n,c(lambda1,lambda2))
  }

  # note: for AI analysis, do not use scaling!
  y <- scaleInfReps(y, quiet=TRUE)
  y <- labelKeep(y)
  y <- computeInfRV(y)

  sin_transform <- function(t) {
    sin(2 * pi * (cov - min(t))/diff(range(t)))
  }
  
  y$sin_cov <- sin_transform(y$cov)
  
  y <- swish(y, x="condition", pair="pair",
             cov="sin_cov", cor="pearson", nperms=30)
  #hist(mcols(y)$pvalue)
  #plot(-log10(mcols(y)$pvalue[1:30]))
  mcols(y)[1:4,]
  
  plotInfReps(y, 1, x="cov", cov="condition",
              shiftX=.05,
              legend=TRUE, legendPos="bottom")
  dev.off()
  
})
mikelove/fishpond documentation built on Jan. 4, 2025, 1:14 p.m.