#' @title updating hyperparameters
#' @description Hyperparameter update.
#'
#' @param q probes x samples matrix
#' @param set.inds Probe set indices
#' @param verbose Print progress information
#' @param mc.cores Number of cores for parallel computation
#' @param alpha alpha hyperparameter
#' @param betas beta hyperparameters
#' @param epsilon Convergence parameter
#'
#' @return List with the following elements: alpha, betas, s2s (variances)
#'
#' @references See citation("RPA")
#' @author Leo Lahti \email{leo.lahti@@iki.fi}
#' @export
#' @examples #
#' @keywords utilities
updating.hyperparameters <- function (q, set.inds, verbose, mc.cores = 1, alpha, betas, epsilon) {
# Get probes x samples matrix of probe-wise fold-changes
# Select one of the arrays as a reference at
# random for each batch. Choice of the reference array does not notably affect
# the results in experiments as the control effect is marginalized
# out in the treatment. Note that in rpa.online implementation,
# cind is specific to each batch but it is only used to in
# hyperparameter estimation step to cancel probe affinity effects;
# in probeset summarization no reference sample is needed. Whether
# cind is the same for the overall data collection or
# batch-specific should not notably affect the results, either.
cind <- sample(ncol(q), 1)
q <- matrix(q[, -cind] - q[, cind], nrow(q))
if ( verbose ) { message("Get probes x samples matrices for each probeset") }
sets <- names(set.inds)
q <- mclapply(set.inds, function (pmis) { matrix(q[pmis,], length(pmis)) }, mc.cores = mc.cores)
names(q) <- sets
# Get variance point estimate. Then beta can be solved, as alpha is given based on batch size
if ( verbose ) { message("Update probe parameters") }
pars <- mclapply(sets, function (set) {
# For a single probeset
estimated <- RPA.iteration(t(q[[set]]), epsilon, alpha, betas[[set]]);
return(list(alpha = estimated$alpha,
beta = estimated$beta,
s2s = estimated$tau2))
}, mc.cores = mc.cores)
# Alpha is same for all probesets
alpha <- pars[[1]]$alpha
# Pick betas and variances into their own vectors
betas <- mclapply(pars, function (x) {x$beta}, mc.cores = mc.cores)
names(betas) <- sets
s2s <- mclapply(pars, function (x) {x$s2s}, mc.cores = mc.cores)
names(s2s) <- sets
list(alpha = alpha, betas = betas, s2s = s2s)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.