View source: R/predictAttractor.R
predictAttractor | R Documentation |
This function computes the posterior probabilities of attractors reached for a given perturbation using the networks from a ternaryPost object.
predictAttractor(tpost, perturbations, wildtype = TRUE, verbose = FALSE)
tpost |
a ternaryPost object |
perturbations |
a list with two elements: perturbed.genes and forced.states |
wildtype |
if TRUE, the wildtype attractors are summarized; if FALSE, the perturbed attractors are summarized. |
verbose |
if TRUE, periodic reports on progress are printed. |
The function returns a list with two elements: \ post.prob: the posterior probability of each attractor \ attractor.summary: a single vector of steady states based on the resulting attractor
Matthew N. McCall and Anthony Almudevar
Almudevar A, McCall MN, McMurray H, Land H (2011). Fitting Boolean Networks from Steady State Perturbation Data, Statistical Applications in Genetics and Molecular Biology, 10(1): Article 47.
ssObj <- matrix(c(1,1,1,0,1,1,0,0,1),nrow=3)
pObj <- matrix(c(1,0,0,0,1,0,0,0,1),nrow=3)
rownames(ssObj) <- rownames(pObj) <- colnames(ssObj) <- colnames(pObj) <- c("Gene1","Gene2","Gene3")
tnfitObj <- tnetfit(ssObj, pObj)
tnpostObj <- tnetpost(tnfitObj, mdelta=10, msample=10)
predictAttractor(tnpostObj, list(perturbed.genes=c(1,2),forced.states=c(1,1)))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.