#' @title DA_dearseq
#'
#' @importFrom dearseq dear_seq
#' @importFrom SummarizedExperiment assays
#' @export
#' @description
#' Fast run for dearseq differential abundance detection method.
#'
#' @inheritParams DA_edgeR
#' @param covariates a character vector containing the colnames of the
#' covariates to include in the model.
#' @param variables2test a character vector containing the colnames of the
#' variable of interest.
#' @param test a character string indicating which method to use to approximate
#' the variance component score test, either 'permutation' or 'asymptotic'
#' (default \code{test = "permutation"}).
#' @inheritParams dearseq::dear_seq
#'
#' @return A list object containing the matrix of p-values `pValMat`,
#' a matrix of summary statistics for each tag `statInfo` which are still the
#' p-values as this method does not produce other values, and a suggested
#' `name` of the final object considering the parameters passed to the
#' function.
#'
#' @seealso \code{\link[dearseq]{dear_seq}} for analysis of differential
#' expression/abundance through a variance component test.
#'
#' @examples
#' set.seed(1)
#' # Create a very simple phyloseq object
#' counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
#' metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),
#' "group" = as.factor(c("A", "A", "A", "B", "B", "B")))
#' ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),
#' phyloseq::sample_data(metadata))
#' # Differential abundance
#' DA_dearseq(object = ps, pseudo_count = FALSE, covariates = NULL,
#' variables2test = "group", sample_group = NULL, test = "asymptotic",
#' preprocessed = FALSE, verbose = TRUE)
DA_dearseq <- function(object, assay_name = "counts", pseudo_count = FALSE,
covariates = NULL, variables2test = NULL, sample_group = NULL,
test = c("permutation", "asymptotic"), preprocessed = FALSE,
n_perm = 1000, verbose = TRUE){
counts_and_metadata <- get_counts_metadata(object, assay_name = assay_name)
counts <- counts_and_metadata[[1]]
metadata <- counts_and_metadata[[2]]
is_phyloseq <- counts_and_metadata[[3]]
# Name building
name <- "dearseq"
method <- "DA_dearseq"
# add 1 if any zero counts
if (any(counts == 0) & pseudo_count){
message("Adding a pseudo count... \n")
counts <- counts + 1
name <- paste(name, ".pseudo", sep = "")
}
# Check the assay
if (!is_phyloseq){
if(verbose)
message("Using the ", assay_name, " assay.")
name <- paste(name, ".", assay_name, sep = "")
}
# Check the variable2test
if(is.null(variables2test)){
stop(method, "\n",
"variables2test: please choose a variable to test.")
}
# Check the sample_group
if(!is.null(sample_group)){
sample_group <- metadata[, sample_group]
name <- paste(name, ".", "repeated", sep = "")
}
# Check the test
if(length(test) != 1){
stop(method, "\n",
"test: please choose one test for this istance of",
" differential abundance analysis.")
}
name <- paste(name, ".", test, sep = "")
if(test == "permutation"){
name <- paste(name, ".", n_perm, sep = "")
}
# Check the preprocessed
if(!preprocessed){
if(assay_name != "counts"){
warning(method, "\n",
"The 'assay_name' = ", assay_name, " but 'preprocessed' = ",
" FALSE. Be sure the data are not preprocessed.")
}
} else {
name <- paste(name, ".", "preprocessed", sep = "")
}
input <- SummarizedExperiment::SummarizedExperiment(
assays = list("counts" = counts),
colData = metadata)
if(verbose){
res <- dearseq::dear_seq(object = input, covariates = covariates,
variables2test = variables2test,
sample_group = sample_group,
which_test = test, parallel_comp = FALSE, n_perm = n_perm,
progressbar = TRUE, preprocessed = preprocessed)
} else {
res <- suppressWarnings(suppressMessages(
dearseq::dear_seq(object = input, covariates = covariates,
variables2test = variables2test,
sample_group = sample_group,
which_test = test, parallel_comp = FALSE, n_perm = n_perm,
progressbar = FALSE, preprocessed = preprocessed)))
}
statInfo <- pValMat <- as.data.frame(res["pvals"])
colnames(statInfo) <- colnames(pValMat) <- c("rawP", "adjP")
return(list("pValMat" = pValMat, "statInfo" = statInfo, "name" = name))
}# END - function: DA_dearseq
#' @title set_dearseq
#'
#' @export
#' @description
#' Set the parameters for dearseq differential abundance detection method.
#'
#' @inheritParams DA_dearseq
#' @param expand logical, if TRUE create all combinations of input parameters
#' (default \code{expand = TRUE}).
#'
#' @return A named list containing the set of parameters for \code{DA_dearseq}
#' method.
#'
#' @seealso \code{\link{DA_dearseq}}
#'
#' @examples
#' # Set some basic combinations of parameters for dearseq
#' base_dearseq <- set_dearseq(pseudo_count = FALSE, variables2test = "group",
#' test = c("permutation", "asymptotic"), expand = TRUE)
set_dearseq <- function(assay_name = "counts", pseudo_count = FALSE,
covariates = NULL, variables2test = NULL, sample_group = NULL,
test = c("permutation", "asymptotic"), preprocessed = FALSE,
n_perm = 1000, expand = TRUE) {
method <- "DA_dearseq"
if (is.null(assay_name)) {
stop(method, "\n", "'assay_name' is required (default = 'counts').")
}
if (!is.logical(pseudo_count)) {
stop(method, "\n", "'pseudo_count' must be logical.")
}
if (!is.logical(preprocessed)) {
stop(method, "\n", "'preprocessed' must be logical.")
}
if (is.null(variables2test)) {
stop(method, "\n", "'variables2test' must be specified.")
}
if (sum(!is.element(test, c("permutation", "asymptotic"))) > 0) {
stop(method, "\n",
"One or more 'test' are not available for dearseq",
" Please choose between 'permutation' or 'asymptotic'.")
}
if (expand) {
parameters <- expand.grid(method = method, assay_name = assay_name,
pseudo_count = pseudo_count, test = test,
preprocessed = preprocessed, n_perm = n_perm,
stringsAsFactors = FALSE)
} else {
message("Some parameters may be duplicated to fill the matrix.")
parameters <- data.frame(method = method, assay_name = assay_name,
pseudo_count = pseudo_count, test = test,
preprocessed = preprocessed, n_perm = n_perm)
}
# data.frame to list
out <- plyr::dlply(.data = parameters, .variables = colnames(parameters))
out <- lapply(X = out, FUN = function(x){
x <- append(x = x, values = list("covariates" = covariates,
"variables2test" = variables2test, "sample_group" = sample_group),
after = 3)
})
names(out) <- paste0(method, ".", seq_along(out))
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.