#' @title DA_basic
#'
#' @importFrom SummarizedExperiment assays
#' @export
#' @description
#' Fast run for basic differential abundance detection methods such as wilcox
#' and t tests.
#'
#' @inheritParams DA_edgeR
#' @param test name of the test to perform. Choose between "t" or "wilcox".
#' @param paired boolean. Choose whether the test is paired or not (default
#' \code{paired = FALSE}). If \code{paired = TRUE} be sure to provide the
#' object properly ordered (by the grouping variable).
#' @param contrast character vector with exactly, three elements: a string
#' indicating the name of factor whose levels are the conditions to be
#' compared, the name of the level of interest, and the name of the other
#' level.
#'
#' @return A list object containing the matrix of p-values `pValMat`,
#' a matrix of summary statistics for each tag `statInfo`, and a suggested
#' `name` of the final object considering the parameters passed to the
#' function.
#'
#' @seealso \code{\link{DA_Seurat}} for a similar implementation of basic
#' tests.
#'
#' @examples
#' set.seed(1)
#' # Create a very simple phyloseq object
#' counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
#' metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),
#' "group" = as.factor(c("A", "A", "A", "B", "B", "B")))
#' ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),
#' phyloseq::sample_data(metadata))
#' # Differential abundance
#' DA_basic(object = ps, pseudo_count = FALSE, contrast = c("group", "B", "A"),
#' test = "t", verbose = FALSE)
DA_basic <- function(object, assay_name = "counts", pseudo_count = FALSE,
contrast = NULL, test = c("t", "wilcox"), paired = FALSE, verbose = TRUE){
counts_and_metadata <- get_counts_metadata(object, assay_name = assay_name)
counts <- counts_and_metadata[[1]]
metadata <- counts_and_metadata[[2]]
is_phyloseq <- counts_and_metadata[[3]]
# Name building
name <- "basic"
method <- "DA_basic"
# Check test
if (length(test) > 1) {
stop(method, "\n",
"test: please choose one test for this istance of",
" differential abundance analysis.")
}
this_tests <- c("t", "wilcox")
if(!is.element(test, this_tests)) {
stop(method, "\n",
test, " test is not available. Choose between 't' or 'wilcox'.")
}
name <- paste(name, ".", test, sep = "")
# check paired
if(paired){
name <- paste(name, ".", "paired", sep = "")
if(verbose){
message(method, "\n",
"'paired' = TRUE. Be sure to have ordered samples in both",
" groups.")
}
}
# add 1 if any zero counts
if (any(counts == 0) & pseudo_count){
message("Adding a pseudo count... \n")
counts <- counts + 1
name <- paste(name, ".pseudo", sep = "")
}
# Check the assay
if (!is_phyloseq){
if(verbose)
message("Using the ", assay_name, " assay.")
name <- paste(name, ".", assay_name, sep = "")
}
if(!is.character(contrast) | length(contrast) != 3){
stop(method, "\n",
"contrast: please supply a character vector with exactly",
" three elements: a string indicating the name of factor whose",
" levels are the conditions to be compared,",
" the name of the level of interest, and the",
" name of the other level.")
}
if(is.element(contrast[1], colnames(metadata))){
if(!is.factor(metadata[, contrast[1]])){
if(verbose){
message("Converting variable ", contrast[1], " to factor.")
}
metadata[, contrast[1]] <- as.factor(metadata[, contrast[1]])
}
if(!is.element(contrast[2], levels(metadata[, contrast[1]])) |
!is.element(contrast[3], levels(metadata[, contrast[1]]))){
stop(method, "\n",
"contrast: ", contrast[2], " and/or ", contrast[3],
" are not levels of ", contrast[1], " variable.")
}
if(verbose){
message("Setting ", contrast[3], " the reference level for ",
contrast[1], " variable.")
}
metadata[, contrast[1]] <- stats::relevel(metadata[, contrast[1]],
ref = contrast[3])
}
group1 <- which(metadata[, contrast[1]] == contrast[2])
group2 <- which(metadata[, contrast[1]] == contrast[3])
if(paired & length(group1) != length(group2)){
stop(method, "\n",
"paired = TRUE but ", contrast[2], " and ", contrast[3],
" have ", length(group1), " and ", length(group2), " samples",
" respectively.")
}
statInfo <- plyr::ldply(apply(X = counts, MARGIN = 1,
FUN = function(feature){
if(!paired){
# Compute the average values
avg_group1 <- mean(feature[group1])
avg_group2 <- mean(feature[group2])
# Compute the logFC
logFC <- log1p(avg_group1) - log1p(avg_group2)
} else {
logFC <- mean(log1p(feature[group1]) - log1p(feature[group2]))
}
if(test == "t"){
results <- stats::t.test(x = feature[group1], y = feature[group2],
paired = paired)
out <- data.frame(
"statistic" = results[["statistic"]],
"pvalue" = results[["p.value"]],
"lowCI" = results[["conf.int"]][1],
"uppCI" = results[["conf.int"]][2])
}
if(test == "wilcox"){
results <- stats::wilcox.test(x = feature[group1],
y = feature[group2], paired = paired, exact = FALSE)
out <- data.frame(
"statistic" = results[["statistic"]],
"pvalue" = results[["p.value"]])
}
out <- data.frame(out, "logFC" = logFC)
return(out)
}))
colnames(statInfo)[1] <- "taxon"
# Creating pValMat
padj <- stats::p.adjust(p = statInfo$pvalue, method = "BH")
pValMat <- data.frame("rawP" = statInfo[, "pvalue"], "adjP" = padj)
rownames(statInfo) <- rownames(pValMat) <- statInfo[, 1]
return(list("pValMat" = pValMat, "statInfo" = statInfo, "name" = name))
}# END - function: DA_basic
#' @title set_basic
#'
#' @export
#' @description
#' Set the parameters for basic differential abundance detection methods such
#' as t and wilcox.
#'
#' @inheritParams DA_basic
#' @param expand logical, if TRUE create all combinations of input parameters
#' (default \code{expand = TRUE}).
#'
#' @return A named list containing the set of parameters for \code{DA_basic}
#' method.
#'
#' @seealso \code{\link{DA_basic}}
#'
#' @examples
#' # Set some basic methods
#' basic_methods <- set_basic(pseudo_count = FALSE, test = c("t", "wilcox"),
#' contrast = c("group", "B", "A"), expand = TRUE)
set_basic <- function(assay_name = "counts", pseudo_count = FALSE,
contrast = NULL, test = c("t", "wilcox"), paired = FALSE, expand = TRUE) {
method <- "DA_basic"
if (is.null(assay_name)) {
stop(method, "\n", "'assay_name' is required (default = 'counts').")
}
if (!is.logical(pseudo_count) | !is.logical(paired)) {
stop(method, "\n", "'pseudo_count' and 'paired' must be logical.")
}
if (is.null(contrast)) {
stop(method, "\n", "'contrast' must be specified.")
}
if (!is.character(contrast) & length(contrast) != 3){
stop(method, "\n",
"contrast: please supply a character vector with exactly",
" three elements: a string indicating the name of factor whose",
" levels are the conditions to be compared,",
" the name of the level of interest, and the",
" name of the other level.")
}
if (sum(!is.element(test, c("t", "wilcox"))) > 0) {
stop(method, "\n",
"One or more elements into 'test' are not available.",
" Please choose between 't' or 'wilcox'.")
}
if (expand) {
parameters <- expand.grid(method = method, assay_name = assay_name,
pseudo_count = pseudo_count, test = test, paired = paired,
stringsAsFactors = FALSE)
} else {
message("Some parameters may be duplicated to fill the matrix.")
parameters <- data.frame(method = method, assay_name = assay_name,
pseudo_count = pseudo_count, test = test, paired = paired)
}
# data.frame to list
out <- plyr::dlply(.data = parameters, .variables = colnames(parameters))
out <- lapply(X = out, FUN = function(x){
x <- append(x = x, values = list("contrast" = contrast), after = 3)
})
names(out) <- paste0(method, ".", seq_along(out))
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.