#' @title DA_ANCOM
#'
#' @importFrom ANCOMBC ancom ancombc2
#' @importFrom SummarizedExperiment assays
#' @importFrom phyloseq otu_table sample_data phyloseq taxa_are_rows
#' @importFrom lme4 lmerControl
#' @export
#' @description
#' Fast run for ANCOM and ANCOM-BC2 differential abundance detection methods.
#'
#' @inheritParams DA_edgeR
#' @param fix_formula Used when \code{BC = TRUE} (ANCOM-BC2). The character
#' string expresses how the microbial absolute abundances for each taxon depend
#' on the fixed effects in metadata.
#' @param adj_formula Used when \code{BC = FALSE} (ANCOM). The character string
#' represents the formula for covariate adjustment. Default is NULL.
#' @param rand_formula Optionally used when \code{BC = TRUE} or
#' \code{BC = FALSE}. The character string expresses how the microbial absolute
#' abundances for each taxon depend on the random effects in metadata.
#' ANCOMB and ANCOM-BC2 follows the \code{lmerTest} package in formulating the
#' random effects. See \code{?lmerTest::lmer} for more details. Default is
#' \code{rand_formula = NULL}.
#' @param contrast character vector with exactly, three elements: a string
#' indicating the name of factor whose levels are the conditions to be
#' compared, the name of the level of interest, and the name of the other
#' level.
#' @param BC boolean for ANCOM method to use. If TRUE the bias correction
#' (ANCOM-BC2) is computed (default \code{BC = TRUE}). When \code{BC = FALSE}
#' computational time may increase and p-values are not computed.
#' @inheritParams ANCOMBC::ancombc2
#'
#' @return A list object containing the matrix of p-values `pValMat`,
#' a matrix of summary statistics for each tag `statInfo`, and a suggested
#' `name` of the final object considering the parameters passed to the
#' function. ANCOM (BC = FALSE) does not produce p-values but W statistics.
#' Hence, `pValMat` matrix is filled with \code{1 - W / (nfeatures - 1)} values
#' which are not p-values. To find DA features a threshold on this statistic
#' can be used (liberal < 0.4, < 0.3, < 0.2, < 0.1 conservative).
#'
#' @seealso \code{\link[ANCOMBC]{ancombc}} for analysis of microbiome
#' compositions with bias correction or without it
#' \code{\link[ANCOMBC]{ancom}}.
#'
#' @examples
#' set.seed(1)
#' # Create a very simple phyloseq object
#' counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
#' metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),
#' "group" = as.factor(c("A", "A", "A", "B", "B", "B")))
#' ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),
#' phyloseq::sample_data(metadata))
#' # Differential abundance
#' DA_ANCOM(object = ps, pseudo_count = FALSE, fix_formula = "group", contrast =
#' c("group", "B", "A"), verbose = FALSE)
DA_ANCOM <- function(object, assay_name = "counts", pseudo_count = FALSE,
fix_formula = NULL, adj_formula = NULL, rand_formula = NULL,
lme_control = lme4::lmerControl(), contrast = NULL, alpha = 0.05,
p_adj_method = "BH", struc_zero = FALSE, BC = TRUE, n_cl = 1,
verbose = TRUE){
counts_and_metadata <- get_counts_metadata(object, assay_name = assay_name)
counts <- counts_and_metadata[[1]]
metadata <- counts_and_metadata[[2]]
is_phyloseq <- counts_and_metadata[[3]]
# Name building
name <- "ANCOM"
method <- "DA_ANCOM"
# add 1 if any zero counts
if (any(counts == 0) & pseudo_count){
message("Adding a pseudo count... \n")
counts <- counts + 1
name <- paste(name, ".pseudo", sep = "")
}
# Check the assay
if (!is_phyloseq){
if(verbose)
message("Using the ", assay_name, " assay.")
name <- paste(name, ".", assay_name, sep = "")
}
# If ANCOM_BC2 is used
if(BC){
name <- paste(name, ".", "BC", sep = "")
# Check if the fix_formula is a character
if (!is.character(fix_formula)) {
stop(method, "\n",
"Please specify 'fix_formula' as a character object.")
}
} # If BC is FALSE there is no need to check formulas, they are optional
if(!is.character(contrast) | length(contrast) != 3)
stop(method, "\n",
"contrast: please supply a character vector with exactly",
" three elements: the name of a variable used in",
" 'design', the name of the level of interest, and the",
" name of the reference level.")
if(is.element(contrast[1], colnames(metadata))){
if(!is.factor(metadata[, contrast[1]])){
if(verbose){
message("Converting variable ", contrast[1], " to factor.")
}
metadata[, contrast[1]] <- as.factor(metadata[, contrast[1]])
}
if(!is.element(contrast[2], levels(metadata[, contrast[1]])) |
!is.element(contrast[3], levels(metadata[, contrast[1]]))){
stop(method, "\n",
"contrast: ", contrast[2], " and/or ", contrast[3],
" are not levels of ", contrast[1], " variable.")
}
if(verbose){
message("Setting ", contrast[3], " the reference level for ",
contrast[1], " variable.")
}
metadata[, contrast[1]] <- stats::relevel(metadata[, contrast[1]],
ref = contrast[3])
}
phyloseq_obj <- phyloseq::phyloseq(
otu_table = phyloseq::otu_table(counts, taxa_are_rows = TRUE),
sample_data = phyloseq::sample_data(as.data.frame(metadata))
)
if(struc_zero){ # Add struc_zero to the name
name <- paste(name, ".", "struc_zero", sep = "")
}
# If the sample size is large enough, set neg_lb to TRUE
neg_lb <- ifelse(min(table(metadata[, contrast[1]])) > 30, TRUE, FALSE)
if(verbose){
if(BC){
res <- ancombc2(data = phyloseq_obj, fix_formula = fix_formula,
rand_formula = rand_formula, p_adj_method = p_adj_method,
verbose = verbose, lme_control = lme_control, alpha = alpha,
struc_zero = struc_zero, neg_lb = neg_lb, group = contrast[1],
prv_cut = 0, lib_cut = 0, n_cl = n_cl, pseudo_sens = FALSE)
} else {
res <- ancom(data = phyloseq_obj, adj_formula = adj_formula,
rand_formula = rand_formula, lme_control = lme_control,
p_adj_method = p_adj_method, prv_cut = 0, lib_cut = 0,
main_var = contrast[1], struc_zero = struc_zero,
neg_lb = neg_lb, alpha = alpha, n_cl = n_cl)
}
} else {
if(BC){
res <- suppressMessages(suppressWarnings(
ancombc2(data = phyloseq_obj, fix_formula = fix_formula,
rand_formula = rand_formula, p_adj_method = p_adj_method,
verbose = verbose, lme_control = lme_control,
struc_zero = struc_zero, neg_lb = neg_lb,
group = contrast[1], prv_cut = 0, lib_cut = 0,
alpha = alpha, n_cl = n_cl, pseudo_sens = FALSE)))
} else {
res <- suppressMessages(suppressWarnings(
ancom(data = phyloseq_obj, adj_formula = adj_formula,
rand_formula = rand_formula, lme_control = lme_control,
p_adj_method = p_adj_method, prv_cut = 0, lib_cut = 0,
main_var = contrast[1], struc_zero = struc_zero,
neg_lb = neg_lb, alpha = alpha, n_cl = n_cl)))
}
}
statInfo <- as.data.frame(res[["res"]])
colnames(statInfo) <- names(res[["res"]])
if(!BC){
q_val = res[["q_data"]]
beta_val = res[["beta_data"]]
# consider the effect sizes with q-value less than alpha
beta_val = beta_val * (q_val < alpha)
# Choose the maximum of beta's as the effect size
beta_pos = apply(abs(beta_val), 2, which.max)
beta_max = vapply(seq_along(beta_pos), function(i)
beta_val[beta_pos[i], i], FUN.VALUE = double(1))
statInfo[, "direction"] <- beta_max
}
if(BC){
pValMat <- statInfo[, paste0(c("p_","q_"), contrast[1], contrast[2])]
} else {
pValMat <- 1 - (statInfo[, c("W", "W")] / (nrow(statInfo) - 1))
}
colnames(pValMat) <- c("rawP", "adjP")
rownames(statInfo) <- rownames(pValMat) <- rownames(counts)
return(list("pValMat" = pValMat, "statInfo" = statInfo, "name" = name))
}# END - function: DA_ANCOM
#' @title set_ANCOM
#'
#' @export
#' @importFrom lme4 lmerControl
#' @description
#' Set the parameters for ANCOM differential abundance detection method.
#'
#' @inheritParams DA_ANCOM
#' @param expand logical, if TRUE create all combinations of input parameters
#' (default \code{expand = TRUE}).
#'
#' @return A named list containing the set of parameters for \code{DA_ANCOM}
#' method.
#'
#' @seealso \code{\link{DA_ANCOM}}
#'
#' @examples
#' # Set some basic combinations of parameters for ANCOM with bias correction
#' base_ANCOMBC <- set_ANCOM(pseudo_count = FALSE, fix_formula = "group",
#' contrast = c("group", "B", "A"), BC = TRUE, expand = FALSE)
#' many_ANCOMs <- set_ANCOM(pseudo_count = c(TRUE, FALSE),
#' fix_formula = "group", contrast = c("group", "B", "A"),
#' struc_zero = c(TRUE, FALSE), BC = c(TRUE, FALSE))
set_ANCOM <- function(assay_name = "counts", pseudo_count = FALSE,
fix_formula = NULL, adj_formula = NULL, rand_formula = NULL,
lme_control = lme4::lmerControl(), contrast = NULL, alpha = 0.05,
p_adj_method = "BH", struc_zero = FALSE, BC = TRUE, n_cl = 1,
expand = TRUE) {
method <- "DA_ANCOM"
if (is.null(assay_name)) {
stop(method, "\n", "'assay_name' is required (default = 'counts').")
}
if (!is.logical(pseudo_count) | !is.logical(struc_zero) |
!is.logical(BC)) {
stop(method, "\n",
"'pseudo_count', 'struc_zero', and 'BC' must be logical.")
}
if(!is.null(fix_formula)){
if (!is.character(fix_formula)){
stop(method, "\n", "'fix_formula' should be a character.")
}
}
if(!is.null(adj_formula)){
if (!is.character(adj_formula)){
stop(method, "\n", "'adj_formula' should be a character.")
}
}
if(!is.null(rand_formula)){
if (!is.character(rand_formula)){
stop(method, "\n", "'rand_formula' should be a character.")
}
}
if (is.null(contrast)) {
stop(method, "\n", "'contrast' must be specified.")
}
if (!is.character(contrast) & length(contrast) != 3){
stop(method, "\n",
"contrast: please supply a character vector with exactly",
" three elements: a string indicating the name of factor whose",
" levels are the conditions to be compared,",
" the name of the level of interest, and the",
" name of the other level.")
}
if (expand) {
parameters <- expand.grid(method = method, assay_name = assay_name,
pseudo_count = pseudo_count, alpha = alpha,
p_adj_method = p_adj_method, struc_zero = struc_zero, BC = BC,
stringsAsFactors = FALSE)
} else {
message("Some parameters may be duplicated to fill the matrix.")
parameters <- data.frame(method = method, assay_name = assay_name,
pseudo_count = pseudo_count, alpha = alpha,
p_adj_method = p_adj_method, struc_zero = struc_zero, BC = BC)
}
# data.frame to list
out <- plyr::dlply(.data = parameters, .variables = colnames(parameters))
out <- lapply(X = out, FUN = function(x){
if(x[["BC"]]){
x <- append(x = x, values = list("fix_formula" = fix_formula,
"rand_formula" = rand_formula, "lme_control" = lme_control,
"contrast" = contrast, "n_cl" = n_cl), after = 3)
} else {
x <- append(x = x, values = list("adj_formula" = adj_formula,
"rand_formula" = rand_formula, "lme_control" = lme_control,
"contrast" = contrast, "n_cl" = n_cl), after = 3)
}
})
names(out) <- paste0(method, ".", seq_along(out))
return(out)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.