Plots | R Documentation |
plot_cvg_vs_set_size
Plots the coverage ratios of the input primer sets against the size of the sets.
plot_penalty_vs_set_size
Plots the penalties of the input primer sets
against the number of primers contained in each set.
The penalties are computed using score_primers
where more information is provided on how to set alpha
.
plot_primer_subsets
Visualizes the coverage of optimized primer subsets.
plot_primer
Visualizes the binding positions of every primer relative to the target binding region in the corresponding template sequences.
plot_template_cvg
Creates a bar plot visualizing the covered templates.
plot_primer_cvg
Shows which groups of templates are covered by individual primers.
plot_constraint
Shows the distribution of the primer properties. The current constraint settings are indicated with dashed lines.
plot_constraint_fulfillment
Visualizes which primers pass the constraints and which primers break the constraints
plot_cvg_constraints
Plots the distribution of the coverage constraint values.
plot_constraint_deviation
Plots the deviation of primer properties from the target ranges.
plot_primer_binding_regions
Visualizes the number of binding events of the primers with respect to the allowed binding regions in the templates.
plot_conservation
Plots the template sequence conservation (range [0,1]) according to the Shannon entropy of the sequences.
plot_conservation(entropy.df, alignments, template.df, gap.char = "-")
plot_primer_binding_regions(
primers,
templates,
direction = c("both", "fw", "rev"),
group = NULL,
relation = c("fw", "rev"),
region.names = c("Binding region", "Amplification region"),
...
)
plot_constraint(
primers,
settings,
active.constraints = names(constraints(settings)),
...
)
plot_constraint_fulfillment(
primers,
settings,
active.constraints = names(constraints(settings)),
plot.p.vals = FALSE,
...
)
plot_cvg_constraints(
primers,
settings,
active.constraints = names(cvg_constraints(settings)),
...
)
plot_constraint_deviation(
primers,
settings,
active.constraints = names(constraints(settings)),
...
)
plot_cvg_vs_set_size(
primer.data,
template.data,
show.labels = TRUE,
highlight.set = NULL
)
plot_penalty_vs_set_size(
primer.data,
settings,
active.constraints = names(constraints(settings)),
alpha = 0
)
plot_primer_subsets(primer.subsets, template.df, required.cvg = 1)
plot_primer(
primer.df,
template.df,
identifier = NULL,
relation = c("fw", "rev"),
region.names = c("Binding region", "Amplification region")
)
plot_template_cvg(primers, templates, per.mismatch = FALSE, ...)
plot_primer_cvg(primers, templates, per.mismatch = FALSE, ...)
entropy.df |
A data frame with entropies. Each row gives the entropies of a group of related template sequences for all columns of the alignment. |
alignments |
A list with |
template.df |
An object of class |
gap.char |
The gap char in the alignments. By default,
|
primers |
Either a single |
templates |
If |
direction |
The directionality of primers to be plotted. This can either be "both" to plot primers of both directions (the default), "fw" to plot only forward primers, or "rev" to plot only reverse primers. |
group |
Optional identifiers of template groups for which binding events should
be determined. By default, |
relation |
Whether binding positions are computed relative to forward ("fw") or reverse ("rev") binding regions. The default is "fw". |
region.names |
Character vector of length 2 providing the names of the binding and amplification region. |
... |
Optional arguments |
settings |
An object of class |
active.constraints |
A character vector containing the identifiers
to be considered for plotting. By default, |
plot.p.vals |
An optional logical argument indicating whether
p-values computed via |
primer.data |
List with objects of class |
template.data |
List with objects of class |
show.labels |
Whether the identifiers of the primer sets
should be annotated in the plot. The default is |
highlight.set |
A character vector providing the identifiers
of primer sets to highlight. By default, |
alpha |
A numeric in the range [0,1] defining the trade-off between
the maximal deviation of a constraint (large |
primer.subsets |
A list with optimal primer subsets, each of class |
required.cvg |
The required coverage ratio. The default is 100%; this value is plotted as a horizontal line. |
primer.df |
An object of class |
identifier |
Identifiers of primers that are to be considered.
If |
per.mismatch |
A logical specifying whether the visualization should be stratified
according to the allowed number of mismatches. By default,
|
The deviations for plot_constraint_deviation
are computed in the following way. Let the
minimum and maximum allowed constraint values be given by
the interval [s, e]
and the observed value be p
. Then,
if p < s
, we output -p/|s|
, if p > e
we output p/|e|
,
and otherwise, i.e. if s <= p <= e
, we output 0.
The primer.subsets
argument for plot_primer_subsets
can be computed using
subset_primer_set
.
The line plot indicates the ratio of covered templates when considering
all primers in a primer set of a given size. The bar plots indicate
the coverage ratios of individual primers in a set. The target coverage
ratio is indicated by a horizontal line. Bars exceeding the target ratio
possibly indicate the existence of redundant coverage events.
plot_conseration
returns a plot showing the degree of sequence conservation in the templates.
plot_primer_binding_regions
returns a plot of the primer binding regions.
plot_constraint
returns a plot showing the distribution of primer properties.
plot_constraint_fulfillment
returns a plot indicating the constraints that are fulfilled by the input primers.
plot_cvg_constraints
returns a plot showing the distribution of the coverage constraint values.
plot_constraint_deviation
returns a plot showing the deviations of the primer properties from the target constraints.
plot_cvg_vs_set_size
returns a plot of coverage vs set size.
plot_penalty_vs_set_size
returns a plot of constraint penalties
vs primer set sizes.
plot_primer_subsets
plots the coverages of the primer subsets provided via primer.subsets
.
plot_primer
plots the primer binding sites in the templates.
plot_template_cvg
creates a plot showing the number of covered template sequences.
plot_primer_cvg
creates a plot showing the coverage of individual primers.
Computing the conservation scores for using plot_conservation
requires
the MAFFT software for multiple alignments (http://mafft.cbrc.jp/alignment/software/).
data(Ippolito)
# Select binding regions for every group of templates and plot:
template.df <- select_regions_by_conservation(template.df, win.len = 30)
if (length(template.df) != 0) {
p1 <- plot_conservation(attr(template.df, "entropies"),
attr(template.df, "alignments"), template.df)
}
# Select binding regions for all templates and plot:
data(Ippolito)
template.df <- select_regions_by_conservation(template.df, by.group = FALSE)
if (length(template.df) != 0) {
p2 <- plot_conservation(attr(template.df, "entropies"),
attr(template.df, "alignments"), template.df)
}
# Primer binding regions of a single primer set
data(Ippolito)
p <- plot_primer_binding_regions(primer.df, template.df)
# Primer binding regions of multiple primer sets
data(Comparison)
p.comp <- plot_primer_binding_regions(primer.data[1:3], template.data[1:3])
# Plot histogram of constraints for a single primer set
data(Ippolito)
p <- plot_constraint(primer.df, settings,
active.constraints = c("gc_clamp", "gc_ratio"))
# Compare constraints across multiple primer sets
data(Comparison)
p.cmp <- plot_constraint(primer.data[1:3], settings,
active.constraints = c("gc_clamp", "gc_ratio"))
# Plot fulfillment for a single primer set:
data(Ippolito)
p <- plot_constraint_fulfillment(primer.df, settings)
# Plot fulfillment for multiple primer sets:
data(Comparison)
p.cmp <- plot_constraint_fulfillment(primer.data[1:5], settings)
# Plot coverage constraints of a single primer set
data(Ippolito)
p <- plot_cvg_constraints(primer.df, settings)
# Plot coverage constraints for mulitple primer sets
data(Comparison)
p.cmp <- plot_cvg_constraints(primer.data[1:2], settings)
# Deviations for a single primer set
data(Ippolito)
p.dev <- plot_constraint_deviation(primer.df, settings)
# Deviations for multiple primer sets
data(Comparison)
p.dev.cmp <- plot_constraint_deviation(primer.data, settings)
# Plot coverage vs primer set size
data(Comparison)
p <- plot_cvg_vs_set_size(primer.data, template.data)
# Plot penalties vs number of primers
data(Comparison)
p <- plot_penalty_vs_set_size(primer.data, settings)
# Plot the coverage of optimal primer subsets
data(Ippolito)
primer.subsets <- subset_primer_set(primer.df, template.df, k = 3)
p <- plot_primer_subsets(primer.subsets, template.df)
# Plot of individual primer binding positions
data(Ippolito)
p <- plot_primer(primer.df[1,], template.df[1:30,])
# Visualize the template coverage of a single primer set
data(Ippolito)
p.cvg <- plot_template_cvg(primer.df, template.df)
# Stratify by allowed mismatches:
p.mm.cvg <- plot_template_cvg(primer.df, template.df, per.mismatch = TRUE)
# Compare the coverage of multiple primer sets
data(Comparison)
p.cmp.cvg <- plot_template_cvg(primer.data[1:2], template.data[1:2])
# Stratify by allowed mismatches:
p.cmp.cvg.mm <- plot_template_cvg(primer.data[1:2], template.data[1:2],
per.mismatch = TRUE)
# Plot expected coverage per primer
data(Ippolito)
p.cvg <- plot_primer_cvg(primer.df, template.df)
# Plot coverage stratified by allowed mismatches:
p.cvg.mm <- plot_primer_cvg(primer.df, template.df, per.mismatch = TRUE)
# Plot coverage of multiple primer sets
data(Comparison)
p.cvg.cmp <- plot_primer_cvg(primer.data[1:3], template.data[1:3])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.