xml.file <- system.file("extdata", "settings", "B_Taq_PCR_evaluate.xml", package = "openPrimeR") settings <- read_settings(xml.file) constraints(settings) <- constraints(settings)[names(constraints(settings)) != "gc_clamp"] constraints(settings)$primer_coverage <- c("min" = 5) conOptions(settings)$allowed_mismatches <- 0 conOptions(settings)$allowed_other_binding_ratio <- 0 conOptions(settings)$allowed_region_definition <- "any" fasta.file <- system.file("extdata", "IMGT_data", "templates", "Homo_sapiens_IGH_functional_exon.fasta", package = "openPrimeR") hdr.structure <- c("ACCESSION", "GROUP", "SPECIES", "FUNCTION") delim <- "|" template.df <- read_templates(fasta.file, hdr.structure = hdr.structure, delim = "|") leader.fasta <- system.file("extdata", "IMGT_data", "templates", "Homo_sapiens_IGH_functional_leader.fasta", package = "openPrimeR") template.df <- assign_binding_regions(template.df, fw = leader.fasta, rev = NULL) template.df <- adjust_binding_regions(template.df, c(-max(template.df$Allowed_End_fw), 0), NULL) fasta.file <- system.file("extdata", "IMGT_data", "primers", "IGHV", "Tiller2008_1st.fasta", package = "openPrimeR") primer.df <- read_primers(fasta.file)
To learn more about the properties of the primers, we can use check_constraints()
. In this part of the tutorial, we will specifically deal with the coverage of the templates that is afforded by the primers. To analyze only the coverage, you can supply primer_coverage
to the active.constraints
argument of check_constraints()
:
# Evaluate the primer coverage and store the results in 'constraint.df'
# Evaluate the primer coverage and store the results in 'constraint.df' constraint.df <- check_constraints(primer.df, template.df, settings, active.constraints = "primer_coverage")
xml.file <- system.file("extdata", "settings", "B_Taq_PCR_evaluate.xml", package = "openPrimeR") settings <- read_settings(xml.file) constraints(settings) <- constraints(settings)[names(constraints(settings)) != "gc_clamp"] constraints(settings)$primer_coverage <- c("min" = 5) conOptions(settings)$allowed_mismatches <- 0 conOptions(settings)$allowed_other_binding_ratio <- 0 conOptions(settings)$allowed_region_definition <- "any" fasta.file <- system.file("extdata", "IMGT_data", "templates", "Homo_sapiens_IGH_functional_exon.fasta", package = "openPrimeR") hdr.structure <- c("ACCESSION", "GROUP", "SPECIES", "FUNCTION") delim <- "|" template.df <- read_templates(fasta.file, hdr.structure = hdr.structure, delim = "|") leader.fasta <- system.file("extdata", "IMGT_data", "templates", "Homo_sapiens_IGH_functional_leader.fasta", package = "openPrimeR") template.df <- assign_binding_regions(template.df, fw = leader.fasta, rev = NULL) template.df <- adjust_binding_regions(template.df, c(-max(template.df$Allowed_End_fw), 0), NULL) fasta.file <- system.file("extdata", "IMGT_data", "primers", "IGHV", "Tiller2008_1st.fasta", package = "openPrimeR") primer.df <- read_primers(fasta.file) constraint.df <- check_constraints(primer.df, template.df, settings, active.constraints = "primer_coverage")
Please investigate the structure of constraint.df
. The column primer_coverage
provides the number of covered templates and the column Covered_Seqs
gives comma-separated strings with the identifiers of the covered templates. Let's try to find the primer with the highest coverage as well as the template sequences that are covered by the primer:
# Investigate the structure of the primers and then find the primer with the highest coverage and the templates that it covers
asS3(constraint.df) max.idx <- which.max(constraint.df$primer_coverage) max.ID <- primer.df$ID[max.idx] print(max.ID) covered.templates.id <- strsplit(constraint.df$Covered_Seqs[max.idx], split = ",")[[1]] covered.templates <- template.df$ID[match(covered.templates.id, template.df$Identifier)] print(covered.templates)
Great! Let's visualize which templates are covered by the primers using plot_template_cvg()
.
plot_template_cvg(constraint.df, template.df)
In the plot, Identity Coverage
indicates the coverage when requiring full complementarity, while Expected Coverage
provides the coverage when applying the coverage constraints. Since we didn't allow for any mismatches, both coverage values are basically identical. Available Templates
provides the number of template sequences per group. From the plot we can see that, when we don't allow for any mismatches, about 47% of the templates are covered by the primers and that IGHV3, IGHV4, IGHV5, and IGHV7 are (partially) covered. To find out which primer amplifies which template groups, we can use plot_primer_cvg
:
# Plot the primer coverage
plot_primer_cvg(constraint.df, template.df)
This plot reveals that each primer binds with 100% complementarity only to individual groups of templates; note that the primer VH_1
targets only IGHV7, which consists of a single template sequence.
Our analysis was extremely conservative, since we didn't consider mismatch binding events. To more accurately estimate the coverage of the primers, let's ramp up the number of considered template-primer binding events by allowing to 7 mismatches using conOptions()
:
# Increase the number of allowed mismatches to 7
conOptions(settings)$allowed_mismatches <- 7
xml.file <- system.file("extdata", "settings", "B_Taq_PCR_evaluate.xml", package = "openPrimeR") settings <- read_settings(xml.file) constraints(settings) <- constraints(settings)[names(constraints(settings)) != "gc_clamp"] constraints(settings)$primer_coverage <- c("min" = 5) conOptions(settings)$allowed_mismatches <- 7 conOptions(settings)$allowed_other_binding_ratio <- 0 conOptions(settings)$allowed_region_definition <- "any" fasta.file <- system.file("extdata", "IMGT_data", "templates", "Homo_sapiens_IGH_functional_exon.fasta", package = "openPrimeR") hdr.structure <- c("ACCESSION", "GROUP", "SPECIES", "FUNCTION") delim <- "|" template.df <- read_templates(fasta.file, hdr.structure = hdr.structure, delim = "|") leader.fasta <- system.file("extdata", "IMGT_data", "templates", "Homo_sapiens_IGH_functional_leader.fasta", package = "openPrimeR") template.df <- assign_binding_regions(template.df, fw = leader.fasta, rev = NULL) template.df <- adjust_binding_regions(template.df, c(-max(template.df$Allowed_End_fw), 0), NULL) fasta.file <- system.file("extdata", "IMGT_data", "primers", "IGHV", "Tiller2008_1st.fasta", package = "openPrimeR") primer.df <- read_primers(fasta.file) constraint.df <- check_constraints(primer.df, template.df, settings, active.constraints = "primer_coverage")
Let's re-analyze the coverage with the changed settings using check_constraints()
:
# Compute the coverage again
constraint.df <- check_constraints(primer.df, template.df, settings, active.constraints = "primer_coverage")
Let's visualize the template and primer coverage again to identify how the coverage has changed:
# Plot the template coverage and the primer coverage
plot_template_cvg(constraint.df, template.df) plot_primer_cvg(constraint.df, template.df)
The new results are impressively different to the previous ones. When we allow for more mismatches, quite a large percentage of templates are estimated to be covered and even the VH_1
primer is revealed to cover multiple template groups at the same time. We can take a closer look at the distribution of coverage events occur ING for different numbers of mismatches between primers and templates by supplying the boolean per.mismatch
argument to the two plotting functions:
# Plot the template coverage and the primer coverage, stratified by mismatches
plot_template_cvg(constraint.df, template.df, per.mismatch = TRUE) plot_primer_cvg(constraint.df, template.df, per.mismatch = TRUE)
These plots reveal that allowing for only 1 mismatch already provides more than 50% coverage and that most coverage events of VH_1
occur with at least 6 mismatches.
Note that the estimated coverage takes into account only the properties of the primers that are directly associated with binding to a template (e.g. free energy and mismatches). Of course, there are many more properties that can influence whether an amplification is successful or not.
For example, if a primer forms a complex with another primer in a multiplex reaction, this may greatly reduce product yields. Therefore, the estimated coverage should be used as an indicator for the coverage can be achieved if the other properties of the primers are reasonable. To determine if this is the case, we will analyze these properties in the next part of the tutorial.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.