# A collection of variables that describe where the sampling will happen.
# An S4 class, so that they are created once, then dispatched on when
# required for multiple samples.
setClassUnion("MappabilitySource", c("BSgenome", "character"))
setClass(".CoverageSamples",
representation(
pos.labels = "ANY", # character or numeric.
cvg.samps = "GRanges",
marks.samps.map = "ANY" # NULL or BSgenome.
))
setClass("ScoresList", representation(
names = "character",
scores = "list", # list of matrices.
anno = "GRanges",
up = "numeric",
down = "numeric",
dist = "ANY", # character or NULL.
freq = "numeric",
s.width = "ANY", # character or NULL.
.samp.info = ".CoverageSamples"
))
setMethod("names", "ScoresList", function(x) x@names)
setGeneric("tables", function(x) {standardGeneric("tables")})
setMethod("tables", "ScoresList", function(x) x@scores)
setMethod("length", "ScoresList", function(x) length(x@scores))
setMethod("show", "ScoresList",
function(object)
{
if(!is.null(object@dist))
dist.label <- ifelse(object@dist == "percent", '%', "bases")
else
dist.label <- "bases"
cat("An object of class 'ScoresList'.\n")
cat("Tables: ", paste(object@names, collapse = ", "), ".\n", sep = '')
cat("Features:\n")
print(object@anno)
cat("Region:", paste(object@up, dist.label, "up to", object@down,
dist.label, "down.\n"))
if(!is.null(object@s.width))
{
cat("Smoothing:", paste(object@s.width, collapse = ", "), "bases.\n")
cat("Sampling : ", object@freq, ' ', dist.label, ".\n\n", sep = '')
} else {
cat("Window Width : ", object@freq, ' ', dist.label, ".\n\n", sep = '')
}
})
setMethod("[", c("ScoresList", "ANY", "missing"),
function(x, i, j, ..., drop = TRUE)
{
new("ScoresList", names = x@names[i], anno = x@anno, scores = x@scores[i],
up = x@up, down = x@down, dist = x@dist,
freq = x@freq, s.width = x@s.width[i], .samp.info = x@.samp.info)
})
setReplaceMethod("names", "ScoresList",
function(x, value)
{
x@names <- value
x
}
)
setGeneric("subsetRows", function(x, i) {standardGeneric("subsetRows")})
setMethod("subsetRows", "ScoresList",
function(x, i = NULL)
{
if(is.null(i))
stop("No row indices given to subset by.")
new("ScoresList", names = x@names, anno = x@anno[i],
scores = lapply(x@scores, function(y) y[i, ]),
up = x@up, down = x@down, dist = x@dist,
freq = x@freq, s.width = x@s.width, .samp.info = x@.samp.info)
})
setClass("ClusteredScoresList", representation(
cluster.id = "factor",
expr = "ANY",
expr.name = "ANY",
sort.data = "ANY",
sort.name = "ANY",
.old.ranges = "ANY"),
contains = "ScoresList")
setMethod("show", "ClusteredScoresList",
function(object)
{
dist.label <- ifelse(object@dist == "percent", '%', "bases")
cat("An object of class 'ClusteredScoresList'.\n")
cat("Tables: ", paste(object@names, collapse = ", "), ".\n", sep = '')
cat("Region: ", paste(object@up, dist.label, "up to", object@down,
dist.label, "down.\n"))
cat("Features:\n")
print(object@anno)
if(!is.null(object@s.width))
cat("Smoothing:", paste(object@s.width, collapse = ", "), "bases.\n")
cat("Sampling: ", object@freq, ' ', dist.label, ".\n", sep = '')
if(!is.null(object@expr))
cat("Feature Expressions:", object@expr.name,
paste('\n', paste(head(round(object@expr, 2)), collapse = ", "),
", ...\n", sep = ''))
cat("Feature Clusters:", paste(paste(head(object@cluster.id),
collapse = ", "), ", ...\n", sep = ''))
if(!is.null(object@sort.data))
cat("Within Cluster Sorting: By ", object@sort.name, ". ",
paste(paste(head(object@sort.data), collapse = ", "), ", ...\n", sep = ''),
sep = '')
})
# Constructor
setGeneric("ClusteredScoresList", function(x, ...)
{standardGeneric("ClusteredScoresList")})
setMethod("ClusteredScoresList", "ScoresList",
function(x, anno = x@anno, scores = tables(x), expr = NULL, expr.name = NULL, cluster.id, sort.data = NULL,
sort.name = NULL)
{
new("ClusteredScoresList", names = x@names, scores = scores, anno = anno,
up = x@up, down = x@down, dist = x@dist,
freq = x@freq, s.width = x@s.width, cluster.id = cluster.id,
expr = expr, expr.name = expr.name, sort.data = sort.data,
sort.name = sort.name, .samp.info = x@.samp.info)
})
setMethod("[", c("ClusteredScoresList", "ANY", "missing"),
function(x, i, j, ..., drop = TRUE)
{
new("ClusteredScoresList", names = x@names[i], scores = x@scores[i],
anno = x@anno, up = x@up, down = x@down, dist = x@dist,
freq = x@freq, s.width = x@s.width[i], cluster.id = x@cluster.id,
expr = x@expr, expr.name = x@expr.name, sort.data = x@sort.data,
sort.name = x@sort.name, .samp.info = x@.samp.info)
})
setMethod("subsetRows", "ClusteredScoresList",
function(x, i = NULL)
{
if(is.null(i))
stop("No row indices given to subset by.")
old.ranges <- lapply(x@scores, range, na.rm = TRUE)
new("ClusteredScoresList", names = x@names,
scores = lapply(x@scores, function(y) y[i, ]),
anno = x@anno[i], up = x@up, down = x@down, dist = x@dist,
freq = x@freq, s.width = x@s.width, cluster.id = x@cluster.id[i],
expr = x@expr[i], expr.name = x@expr.name, sort.data = x@sort.data[i],
sort.name = x@sort.name, .old.ranges = old.ranges, .samp.info = x@.samp.info)
})
setGeneric("clusters", function(x, ...)
{standardGeneric("clusters")})
setMethod("clusters", "ClusteredScoresList",
function(x)
{
x@cluster.id
})
setClass("GCAdjustParams", representation(
genome = "BSgenome",
mappability = "MappabilitySource",
min.mappability = "numeric",
n.bins = "numeric",
min.bin.size = "numeric",
poly.degree = "numeric",
ploidy = "numeric")
)
# Constructor
setGeneric("GCAdjustParams", function(genome, mappability, ...)
{standardGeneric("GCAdjustParams")})
setMethod("GCAdjustParams", c("BSgenome", "MappabilitySource"),
function(genome, mappability, min.mappability, n.bins = NULL, min.bin.size = 2,
poly.degree = NULL, ploidy = 1)
{
if(is.null(min.mappability))
stop("Minimum mappability of counting windows to keep not given.")
if(is.null(n.bins))
stop("Number of GC bins to bin counts into not given.")
new("GCAdjustParams", genome = genome, mappability = mappability, min.mappability = min.mappability,
n.bins = n.bins, min.bin.size = min.bin.size, poly.degree = poly.degree,
ploidy = ploidy)
})
setClass("CopyEstimate", representation(
windows = "GRanges",
unadj.CN = "matrix",
unadj.CN.seg = "GRangesList",
type = "character")
)
setGeneric("CopyEstimate", function(windows, unadj.CN, unadj.CN.seg, type)
{standardGeneric("CopyEstimate")})
setMethod("CopyEstimate", c("GRanges", "matrix", "GRangesList", "character"),
function(windows, unadj.CN, unadj.CN.seg, type = "relative")
{
new("CopyEstimate", windows = windows, unadj.CN = unadj.CN, unadj.CN.seg = unadj.CN.seg, type = type)
})
setMethod("show", "CopyEstimate", function(object) {
cat("Object of class 'CopyEstimate'.\n")
cat("Windows:\n")
print(object@windows)
cat("Unadjusted Copy Number (first 6):\n")
print(head(object@unadj.CN))
cat("Data Type: ", object@type, "\n", sep = '')
if(length(object@unadj.CN.seg) > 0)
{
cat("Segmented Copy Number Estimates:\n")
print(object@unadj.CN.seg)
}
})
setClass("AdjustedCopyEstimate", representation(
ploidy = "numeric",
models = "list",
adj.CN = "matrix",
adj.CN.seg = "GRangesList"),
contains = "CopyEstimate"
)
setGeneric("AdjustedCopyEstimate", function(ploidy, windows, mappability, gc, unadj.CN, models, adj.CN, type)
{standardGeneric("AdjustedCopyEstimate")})
setMethod("AdjustedCopyEstimate", c("numeric", "GRanges", "numeric", "numeric", "matrix", "list", "matrix", "character"),
function(ploidy, windows, mappability, gc, unadj.CN, models, adj.CN, type)
{
if(length(ploidy) < ncol(unadj.CN))
ploidy <- rep(ploidy, ncol(unadj.CN))
elementMetadata(windows) <- DataFrame(mappability, GC = gc)
new("AdjustedCopyEstimate", ploidy = ploidy, windows = windows, unadj.CN = unadj.CN,
models = models, adj.CN = adj.CN, type = type)
})
setMethod("show", "AdjustedCopyEstimate", function(object) {
cat("Object of class 'AdjustedCopyEstimate'.\n")
cat("Genome Ploidy: ", paste(object@ploidy, collapse = ", "), '\n', sep = '')
cat("Windows:\n")
print(object@windows)
cat("Unadjusted Copy Number (first 6):\n")
print(head(object@unadj.CN))
if(length(object@unadj.CN.seg) > 0)
{
cat("Segmented Unadjusted Copy Number Estimates:\n")
print(object@unadj.CN.seg)
}
cat("Model Fits:\n")
print(object@models)
cat("Adjusted Copy Number (first 6):\n")
print(head(round(object@adj.CN, 2)))
if(length(object@adj.CN.seg) > 0)
{
cat("Segmented Adjusted Copy Number Estimates:\n")
print(object@adj.CN.seg)
}
cat("Data Type: ", object@type, "\n", sep = '')
})
# container for output of regionStats()
setClass("RegionStats", representation("list"))
setMethod("show", "RegionStats", function(object) {
cat("Object of class 'RegionStats'.\n")
cat("Results for: ", paste(names(object$regions),collapse=" "), "\n")
cat("Names:", paste(names(object),collapse=" "), "\n")
})
# container for output of ChromaBlocks()
setClass("ChromaResults",
representation(
blocks="GRanges",
regions="IRangesList",
FDRTable="matrix",
cutoff="numeric"
)
)
setMethod("show", "ChromaResults", function(object) {
cat("Object of class 'ChromaResults'.\n")
cat(sum(sapply(object@regions, length)), "regions found with using a cutoff of", object@cutoff, "\n")
})
#ChromaResults Generics
setGeneric("blocks", function(x) standardGeneric("blocks"))
setGeneric("regions", function(x) standardGeneric("regions"))
setGeneric("FDRTable", function(x) standardGeneric("FDRTable"))
setGeneric("cutoff", function(x) standardGeneric("cutoff"))
#ChromaResults Accessors
setMethod("blocks", "ChromaResults", function(x) x@blocks)
setMethod("regions", "ChromaResults", function(x) x@regions)
setMethod("FDRTable", "ChromaResults", function(x) x@FDRTable)
setMethod("cutoff", "ChromaResults", function(x) x@cutoff)
# container for abcdDNA stuff
setClass("QdnaData",representation("list"))
# counts="matrix",
# regions="GRanges",
# offsets="matrix",
# neutral="logical",
# design="matrix",
# cnv="matrix"
# )
#)
#setMethod("show", "QdnaData", function(object) {
# cat("Object of class 'QdnaData'.\n")
# cat(nrow(object@counts), "regions for", ncol(object@counts),"samples\n")
# cat("Slots:", slotNames(object),"\n")
#})
setMethod("show", "QdnaData", function(object) {
cat("Object of class 'QdnaData'.\n")
cat(nrow(object$DGEList$counts), "regions for", ncol(object$DGEList$counts),"samples\n")
cat("Slots:", names(object),"\n")
})
#cat("\nCounts:\n")
# print(head(object@counts))
# cat("\nRegions:\n")
# print(object@regions)
# cat("\nOffsets:\n")
# print(head(object@offsets))
#setGeneric("QdnaData", function(counts,regions,design,cnv,offsets,neutral) { standardGeneric("QdnaData") })
#setMethod("QdnaData", c("GRanges", "matrix", "GRangesList", "character"),
#function(counts,regions,design,cnv,offsets,neutral) {
# new("CopyEstimate", windows = windows, unadj.CN = unadj.CN, unadj.CN.seg = unadj.CN.seg, type = type)
#})
######################################################################
## Definition of the "BayMethList" class
######################################################################
setClass("BayMethList", representation(
windows="GRanges", ## Info to which genomic windows the data belong to
control="matrix", ## SssI control
sampleInterest="matrix", ## Sample of interest
cpgDens="numeric", ## CpG density
f="matrix", ## Normalizing offset (possibly including CN-variations)
priorTab="list", ## List of prior parameters for each sample
methEst="list", ## List to save the results
maskEmpBayes="logical" ## indicate which bins should be masked out in the empirical Bayes
))
######################################################################
## Constructor for the "BayMethList" class
######################################################################
setGeneric("BayMethList", function(windows, control, sampleInterest, cpgDens, ...)
{standardGeneric("BayMethList")})
setMethod("BayMethList", c("GRanges", "matrix", "matrix", "numeric"),
function(windows, control, sampleInterest, cpgDens, f=matrix(), priorTab=list(), methEst=list(), maskEmpBayes=logical())
{
# BayMethList <- function(windows, control, sampleInterest, cpgDens,
# f=matrix(), priorTab=list(), methEst=list(), maskEmpBayes=logical())
# {
if( !("GRanges" %in% class(windows)) || !("matrix" %in% class(control)) ||
!("matrix" %in% class(sampleInterest)) || !("numeric" %in% class(cpgDens)) ) {
stop("\n\n\t `windows' must be of class `GRanges', `control' and
`sampleInterest' of class `matrix' and `cpgDens' a `numeric'
vector\n\n")
}
if( !("matrix" %in% class(f)) ){
stop("\n\n\t 'f' must be a matrix\n\n")
}
if( !("list" %in% class(priorTab)) ){
stop("\n\n\t 'priorTab' must be a list\n\n")
}
if( !("list" %in% class(methEst)) ){
stop("\n\n\t 'methEst' must be a list\n\n")
}
if( !("logical" %in% class(maskEmpBayes)) ){
stop("\n\n\t 'maskEmpBayes' must be a logical vector\n\n")
}
## get the object dimensions
na <- length(windows)
nc <- nrow(control)
ns <- nrow(sampleInterest)
ncp <- length(cpgDens)
nf <- nrow(f)
nm <- length(maskEmpBayes)
## either control is a matrix with one column or
## with the same number of columns as sampleInterest
if((ncol(control) != 1) && (ncol(control) != ncol(sampleInterest))){
stop("\n\n\tNumber of SssI-controls is not correct.
Either only one control or as many as sample of
interests need to be provided.\n\n")
}
if(length(unique(c(na, ns, ncp))) != 1){
stop("\n\n\tThe annotation matrix, sample of interest matrix and
CpG density have not the same length.\n\n")
}
if((nc != 1) && (nc != ns)){
stop("\n\n\tThe length of the control must be either equal to the length of
the sample of interest or one. If it is one it is assumed that
no control information is available\n\n")
}
# if(nc == 1){
# control <- matrix(0, nrow=1, ncol=1)
# }
# if((nf != 1) && (nf != na)){
# stop("\n\n\tThe number of offsets per sample must be either one or be
# equal to the length of the annotation matrix.\n\n")
# }
if((nm != 0) && (nm != na)){
stop("\n\n\tThe logical vector to mask bins out from the empirical Bayes approach must be of the same lenth as the number of bins.\n\n")
}
if(nm == 0){
maskEmpBayes <- rep(FALSE, na)
}
new("BayMethList", windows=windows, control=control,
sampleInterest=sampleInterest, cpgDens=cpgDens, f=f,
priorTab=priorTab, methEst=methEst, maskEmpBayes=maskEmpBayes)
})
######################################################################
## Show function for the "BayMethList" class
######################################################################
setMethod("show", "BayMethList", function(object) {
cat("Object of class 'BayMethList'.\n\n")
cat("- Genomic windows have width:", unique(width(object@windows)), "\n\n")
print(seqnames(object@windows))
cat("\n- Number of control samples:", ncol(object@control),
"\n")
#print(apply(object@control, 2, summary))
cat("\n- Number of samples of interest:",
ncol(object@sampleInterest), "\n")
#print(apply(object@sampleInterest, 2, summary))
#cat("\nSummary information for the CpG density:\n")
#print(summary(object@cpgDens))
if( !all(dim(object@f) == c(1,1)) || (!is.na(object@f[1,1]))){
cat("\n- Slot for normalizing offset is filled.\n")
} else {
cat("\n- Slot for normalizing offset is empty.\n")
}
if(length(object@priorTab) > 0){
cat("\n- Prior parameters are available.\n")
} else {
cat("\n- Prior parameters are NOT available.\n")
}
if(length(object@methEst) > 0){
cat("\n- Methylation estimates are available.\n")
} else {
cat("\n- Methylation estimates are NOT available.\n")
}
if(length(object@maskEmpBayes) > 0){
cat("\n- ", sum(object@maskEmpBayes), " bins are masked out.\n")
}
})
######################################################################
## Access functions for the "BayMethList" class
######################################################################
if(!isGeneric("[")) setGeneric("[", function(object) standardGeneric("["))
setMethod("[", c("BayMethList", "ANY", "missing"),
function(x, i, j, ..., drop = TRUE) {
message("\n\n\tCAUTION: Slots 'f' and 'priorTab' ",
"do not change when taking the subset!\n\n")
if(nrow(x@control) !=1){
controlt <-x@control[i,,drop=FALSE]
} else {
controlt <- x@control
}
new_methEst <- list()
new_methEst[["mean"]] <- x@methEst$mean[i,, drop=FALSE]
new_methEst[["var"]] <- x@methEst$var[i,, drop=FALSE]
new_methEst[["W"]] <- x@methEst$W[i, ,drop=FALSE ]
new_methEst[["al"]] <- x@methEst$al[i,,drop=FALSE ]
new_methEst[["bl"]] <- x@methEst$bl[i,,drop=FALSE ]
new_methEst[["ci"]] <- x@methEst$ci
new_methEst[["ci"]] <- lapply(new_methEst[["ci"]], function(x){x[i,]})
BayMethList(windows=x@windows[i],
control=controlt,
sampleInterest=x@sampleInterest[i,,drop=FALSE],
cpgDens=x@cpgDens[i],
f=x@f,
priorTab=x@priorTab,
methEst=new_methEst,
maskEmpBayes=x@maskEmpBayes[i])
})
setMethod("length", "BayMethList",
function(x) {
length(x@windows)
})
#setMethod("windows", "BayMethList",
# function(x, start=NA, end=NA, width=NA) {
# if (!(identical(start, NA) &&
# identical(end, NA) &&
# identical(width, NA)))
# warning("the \"windows\" method for BayMethList objects ignores ",
# "the 'start', 'end', and 'width' arguments")
# x@windows
#})
if(!isGeneric("windows")) setGeneric("windows",
function(x) standardGeneric("windows"))
setMethod("windows", "BayMethList" ,
function(x) {
x@windows
})
if(!isGeneric("control")) setGeneric("control",
function(object) standardGeneric("control"))
setMethod("control", "BayMethList",
function(object) {
object@control
})
if(!isGeneric("sampleInterest")) setGeneric("sampleInterest",
function(object) standardGeneric("sampleInterest"))
setMethod("sampleInterest", "BayMethList",
function(object) {
object@sampleInterest
})
if(!isGeneric("cpgDens")) setGeneric("cpgDens",
function(object) standardGeneric("cpgDens"))
setMethod("cpgDens", "BayMethList",
function(object) {
object@cpgDens
})
if(!isGeneric("fOffset")) setGeneric("fOffset",
function(object) standardGeneric("fOffset"))
setMethod("fOffset", "BayMethList",
function(object) {
object@f
})
if(!isGeneric("priorTab")) setGeneric("priorTab",
function(object) standardGeneric("priorTab"))
setMethod("priorTab", "BayMethList",
function(object) {
object@priorTab
})
if(!isGeneric("methEst")) setGeneric("methEst",
function(object) standardGeneric("methEst"))
setMethod("methEst", "BayMethList",
function(object) {
object@methEst
})
if(!isGeneric("maskEmpBayes")) setGeneric("maskEmpBayes",
function(object) standardGeneric("maskEmpBayes"))
setMethod("maskEmpBayes", "BayMethList",
function(object) {
object@maskEmpBayes
})
## Determine some lengths
if(!isGeneric("ncontrol")) setGeneric("ncontrol",
function(x) standardGeneric("ncontrol"))
setMethod("ncontrol", "BayMethList", function(x) ncol(x@control))
if(!isGeneric("nsampleInterest")) setGeneric("nsampleInterest",
function(x) standardGeneric("nsampleInterest"))
setMethod("nsampleInterest", "BayMethList", function(x) ncol(x@sampleInterest))
######################################################################
## Replace functions for the "BayMethList" class
######################################################################
setGeneric("windows<-", function(x, value) standardGeneric("windows<-"))
setReplaceMethod("windows", "BayMethList", function(x, value) {
x@windows <- value
x
})
setGeneric("control<-", function(x, value) standardGeneric("control<-"))
setReplaceMethod("control", "BayMethList", function(x, value) {
x@control <- value
x
})
setGeneric("sampleInterest<-",
function(x, value) standardGeneric("sampleInterest<-"))
setReplaceMethod("sampleInterest", "BayMethList", function(x, value) {
x@sampleInterest <- value
x
})
setGeneric("cpgDens<-", function(x, value) standardGeneric("cpgDens<-"))
setReplaceMethod("cpgDens", "BayMethList", function(x, value) {
x@cpgDens <- value
x
})
setGeneric("fOffset<-", function(x, value) standardGeneric("fOffset<-"))
setReplaceMethod("fOffset", "BayMethList", function(x, value) {
if( !("matrix" %in% class(value)) ){
stop("The offset must be of class matrix with the same number of
columns as sample of interests.")
}
if((nrow(value) != 1) && (nrow(value) != length(x))){
stop("\n\n\tThe number of offsets per sample must be either one or be
equal to the length of the annotation matrix.\n\n")
}
x@f <- value
x
})
setGeneric("priorTab<-", function(x, value) standardGeneric("priorTab<-"))
setReplaceMethod("priorTab", "BayMethList", function(x, value) {
x@priorTab <- value
x
})
setGeneric("methEst<-", function(x, value) standardGeneric("methEst<-"))
setReplaceMethod("methEst", "BayMethList", function(x, value) {
x@methEst <- value
x
})
setGeneric("maskEmpBayes<-", function(x, value) standardGeneric("maskEmpBayes<-"))
setReplaceMethod("maskEmpBayes", "BayMethList", function(x, value) {
x@maskEmpBayes <- value
x
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.