## ----loadPackages, include=FALSE, cache=FALSE------------------------------------------------------------------------------------
## load additional packages in this chunk
library(pander)
library(knitr)
library(ggplot2)
library(DBI)
library(reshape2)
library(RSQLite)
library(plyr)
library(dtplyr)
library(dbplyr)
dbname<-"synaptic.proteome_SR_20210704.db.sqlite"
recreate<-TRUE
#'
## ----setup, include=FALSE, cache=FALSE-------------------------------------------------------------------------------------------
## Pander options
panderOptions("digits", 3)
panderOptions("table.split.table", 160)
#'
## ----functions, include=FALSE----------------------------------------------------------------------------------------------------
ddlBR<-paste("CREATE TABLE BrainRegion (",
" ID INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, ",
" Name varchar(255) NOT NULL UNIQUE, ",
" Description varchar(4255), ",
" InterlexID varchar(255), ",
" ParentID integer(10) , ",
" FOREIGN KEY(ParentID) REFERENCES BrainRegion(ID));")
ddlG<-paste("CREATE TABLE Gene (",
" ID INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, ",
" MGI varchar(255), ",
" HumanEntrez integer(10), ",
" MouseEntrez integer(10), ",
" HumanName varchar(255), ",
" MouseName varchar(255), ",
" RatEntrez integer(10), ",
" RatName varchar(255));")
ddlL<-paste("CREATE TABLE Localisation (",
" ID INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, ",
" Name varchar(255) UNIQUE, ",
" Description varchar(4255));")
ddlM<-paste("CREATE TABLE Method (",
" ID INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, ",
" Name varchar(255) NOT NULL UNIQUE, ",
" Description varchar(4255));")
ddlP<-paste("CREATE TABLE Paper (",
" PMID numeric(19, 0) NOT NULL, ",
" Year integer(10) NOT NULL, ",
" Name varchar(255) NOT NULL UNIQUE, ",
" Description varchar(1255), ",
" PRIMARY KEY (PMID));")
ddlPG<-paste("CREATE TABLE PaperGene (",
" GeneID integer(10) NOT NULL, ",
" PaperPMID numeric(19, 0) NOT NULL, ",
" SpeciesTaxID integer(10) NOT NULL, ",
" BrainRegionID integer(10) NOT NULL, ",
" LocalisationID integer(10) NOT NULL, ",
" MethodID integer(10) NOT NULL, ",
" PRIMARY KEY (GeneID, ",
" PaperPMID, ",
" BrainRegionID, ",
" LocalisationID), ",
" FOREIGN KEY(GeneID) REFERENCES Gene(ID), ",
" FOREIGN KEY(PaperPMID) REFERENCES Paper(PMID), ",
" FOREIGN KEY(SpeciesTaxID) REFERENCES Species(TaxID), ",
" FOREIGN KEY(BrainRegionID) REFERENCES BrainRegion(ID), ",
" FOREIGN KEY(LocalisationID) REFERENCES Localisation(ID), ",
" FOREIGN KEY(MethodID) REFERENCES Method(ID));")
ddlPPI<-paste("CREATE TABLE PPI (",
" ID INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, ",
" A integer(10) NOT NULL, ",
" B integer(10) NOT NULL, ",
" type varchar(255) NOT NULL, ",
" method varchar(255) NOT NULL, ",
#" pmid integer(10), ",
" taxID integer(10) NOT NULL, ",
" FOREIGN KEY(A) REFERENCES Gene(ID), ",
" FOREIGN KEY(B) REFERENCES Gene(ID));")
ddlS<-paste("CREATE TABLE Species (",
" TaxID INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT, ",
" Name varchar(255) NOT NULL UNIQUE, ",
" SciName varchar(255));")
ddlUGE<-paste("CREATE UNIQUE INDEX GeneUI ",
" ON Gene (HumanEntrez, MouseEntrez);")
ddlGO <- paste("CREATE TABLE GO (",
" GOID varchar(255) NOT NULL, ",
" Description varchar(255) NOT NULL, ",
" Domain varchar(255) NOT NULL, ",
" PRIMARY KEY (GOID));")
ddlGOGene <- paste("CREATE TABLE GOGene (",
" GeneID integer(10) NOT NULL, ",
" SpecieID integer(10) NOT NULL, ",
" GOID varchar(255) NOT NULL, ",
" FOREIGN KEY(GeneID) REFERENCES Gene(ID), ",
" FOREIGN KEY(SpecieID) REFERENCES Species(TaxID), ",
" FOREIGN KEY(GOID) REFERENCES GO(GOID));")
ddlD <- paste("CREATE TABLE Disease (",
" HDOID varchar(255) NOT NULL, ",
" Description varchar(255), ",
" PRIMARY KEY (HDOID));")
ddlDG <- paste("CREATE TABLE DiseaseGene (",
" GeneID integer(10) NOT NULL, ",
" HDOID varchar(255) NOT NULL, ",
" FOREIGN KEY(GeneID) REFERENCES Gene(ID), ",
" FOREIGN KEY(HDOID) REFERENCES Disease(HDOID));")
ddlMO <- paste("CREATE TABLE GeneToModel (",
" GeneID integer(10) NOT NULL, ",
" EntityID varchar(255) NOT NULL, ",
" PMID numeric(19, 0) NOT NULL, ",
" FOREIGN KEY(GeneID) REFERENCES Gene(ID), ",
" FOREIGN KEY(PMID) REFERENCES Paper(PMID));")
ddlBRS <- paste("CREATE TABLE SpecieRegion (",
" BrainRegionID integer(10) NOT NULL, ",
" TaxID integer(10) NOT NULL, ",
" FOREIGN KEY(TaxID) REFERENCES Species(TaxID), ",
" FOREIGN KEY(BrainRegionID) REFERENCES BrainRegion(ID));")
ddlPapPPI <- paste("CREATE TABLE PaperPPI (",
"PMID NUMERIC(19, 0) NOT NULL, ",
"PPID integer(10) NOT NULL, ",
"FOREIGN KEY(PMID) REFERENCES Paper(PMID), ",
"FOREIGN KEY(PPID) REFERENCES PPI(ID));")
ddlV1<-paste("CREATE VIEW FullGenePaper AS",
"SELECT p.GeneID,LocalisationID, MGI,HumanEntrez,MouseEntrez,HumanName,MouseName,PaperPMID,SpeciesTaxID,MethodID",
"FROM Gene g join PaperGene p on g.ID=p.GeneID;")
ddlV2<-paste("CREATE VIEW FullGenefullPaper AS",
"SELECT p.GeneID,l.Name AS Localisation, ",
"MGI,HumanEntrez,MouseEntrez,HumanName,",
"MouseName,PaperPMID,a.Name AS Paper,",
"a.Year AS Year,",
"SpeciesTaxID,MethodID",
"FROM Gene g join PaperGene p on g.ID=p.GeneID ",
"join Localisation l on l.ID = p.LocalisationID ",
"join Paper a on a.PMID = p.PaperPMID;")
ddlV3<-paste("CREATE VIEW FullGeneFullPaperFullRegion AS",
" SELECT p.GeneID,",
" l.Name AS Localisation,",
" MGI,",
" HumanEntrez,",
" MouseEntrez,",
" HumanName,",
" MouseName,",
" PaperPMID,",
" a.Name AS Paper,",
" a.Year AS Year,",
" SpeciesTaxID,",
" MethodID,",
" b.Name AS BrainRegion",
" FROM Gene g",
" JOIN",
" PaperGene p ON g.ID = p.GeneID",
" JOIN",
" Localisation l ON l.ID = p.LocalisationID",
" JOIN",
" Paper a ON a.PMID = p.PaperPMID",
" JOIN",
" BrainRegion b ON b.ID = p.BrainRegionID;")
ddlV4<-paste("CREATE VIEW FullGeneFullDisease AS",
" SELECT HumanEntrez,",
" HumanName,",
" d.HDOID,",
" d.Description",
" FROM Gene g",
" JOIN",
" DiseaseGene dg ON g.ID = dg.GeneID",
" JOIN",
" disease d ON dg.HDOID = d.HDOID;")
#'
#' # Make database
#'
## ----open.db, warning=FALSE,echo=FALSE-------------------------------------------------------------------------------------------
if(recreate){
unlink(dbname)
}
mydb <- dbConnect(RSQLite::SQLite(), dbname)
dbSendStatement(mydb,ddlBR)
dbSendStatement(mydb,ddlG)
dbSendStatement(mydb,ddlL)
dbSendStatement(mydb,ddlM)
dbSendStatement(mydb,ddlP)
dbSendStatement(mydb,ddlPG)
dbSendStatement(mydb,ddlPPI)
dbSendStatement(mydb,ddlS)
dbSendStatement(mydb,ddlUGE)
dbSendStatement(mydb,ddlGO)
dbSendStatement(mydb,ddlGOGene)
dbSendStatement(mydb,ddlD)
dbSendStatement(mydb,ddlDG)
dbSendStatement(mydb,ddlBRS)
dbSendStatement(mydb,ddlMO)
dbSendStatement(mydb,ddlPapPPI)
dbSendStatement(mydb,ddlV1)
dbSendStatement(mydb,ddlV2)
dbSendStatement(mydb,ddlV3)
dbSendStatement(mydb,ddlV4)
#'
#' # Populate database
#' ## Method
## ----add.methods-----------------------------------------------------------------------------------------------------------------
method.df<-data.frame(ID=1:2,name=c("Shotgun","Target"),description=c("Shotgun","Target"))
dbWriteTable(mydb, "method", method.df,append=TRUE)
#'
#' ## Species
## ----add.species-----------------------------------------------------------------------------------------------------------------
species.df<-data.frame(TaxID=c(9606,10090,10116),
Name=c("human","mouse","rat"),
SciName=c("Homo sapiens",
"Mus musculus",
"Rattus norvegicus"))
dbWriteTable(mydb, "species", species.df,append=TRUE)
#'
#' ## Brain Regions
## ----add.brain.regions-----------------------------------------------------------------------------------------------------------
brainReg.df <- read.table("~/Documents/Synaptic proteome paper/db/Up_March2020/BrainRegions.txt", sep = "\t", header = TRUE, stringsAsFactors = FALSE )
brp <- read.delim("~/Documents/Synaptic proteome paper/db/Up_March2020/BrainRegPapers.txt", sep = "\t", header = T, stringsAsFactors = FALSE)
idxBR <- match(brp$Name, brainReg.df$Name)
dbWriteTable(mydb, "BrainRegion", brainReg.df,append=TRUE)
#' ## SpecieRegion
#'
## ----Specie.Region---------------------------------------------------------------------------------------------------------------
sbr <- read.delim("~/Documents/Synaptic proteome paper/db/Up_March2020/BrainRegionSpecie.txt", sep = "\t", header = TRUE, stringsAsFactors = FALSE)
dbWriteTable(mydb, "SpecieRegion", sbr,append=TRUE)
#'
#' ## Localisation
## ----add.location----------------------------------------------------------------------------------------------------------------
loc.df<-data.frame(ID=1:3,
Name=c("Postsynaptic",
"Presynaptic",
"Synaptosome"),
Description=c("Postsynaptic",
"Presynaptic",
"Synaptosome"))
dbWriteTable(mydb, "localisation", loc.df,append=TRUE)
#'
#'
#' ## Papers
## ----prepare.papers--------------------------------------------------------------------------------------------------------------
papers<-read.delim("~/Documents/Synaptic proteome paper/db/Up_March2020/Paper_DB_summary_April21.txt",sep='\t',header = TRUE, stringsAsFactors = FALSE)
pmed <- read.csv("~/Documents/Synaptic proteome paper/db/Up_March2020/pubmed.data.full.csv", stringsAsFactors = FALSE)
any(papers$PubMed %in% pmed$PMID)
pmed.df <- unique(pmed[,c("PMID", "Year","name")])
names(pmed.df) <- c("PMID","Year","Name")
pmed.df$Description <- NA
p.fq<-as.data.frame(table(pmed.df$Name))
p.fq<-p.fq[p.fq$Freq>1,]
for(nm in p.fq$Var1){
idx.pfq<-which(pmed.df$Name==nm)
pmed.df$Name[idx.pfq]<-paste0(pmed.df$Name[idx.pfq],letters[1:length(idx.pfq)])
}
pmed.df$Name[which(pmed.df$Name %in% papers$Name)]<-paste0(
pmed.df$Name[which(pmed.df$Name %in% papers$Name)],'a')
p.df<-unique(papers[,c('PubMed','Year','Name','Short.description')])
names(p.df)<-c("PMID","Year","Name","Description")
p.df <- rbind(p.df, pmed.df)
p.df<-p.df[!is.na(p.df$Year),]
papers$taxId<-species.df$TaxID[match(papers$Species,species.df$Name)]
papers$methodId<-2
papers$methodId[papers$shotgun=="YES"]<-1
dbWriteTable(mydb, "paper", p.df,append=TRUE)
#'
#' ## Genes
#' ### Genes table
## ----full.genes------------------------------------------------------------------------------------------------------------------
full <- read.delim("~/Documents/Synaptic proteome paper/db/Up_March2020/Full_DB_April21.txt", sep = "\t", header = T, stringsAsFactors = FALSE)
full$ID<-1:dim(full)[1]
fg.df<- full[,c(dim(full)[2],1:7)]
names(fg.df)<-c('ID',
'MGI',
'MouseEntrez',
'MouseName',
'HumanEntrez',
'HumanName',
'RatEntrez',
'RatName')
dbWriteTable(mydb, "gene", fg.df,append=TRUE)
fg.df$surkey<-paste(fg.df$MouseEntrez,
fg.df$HumanEntrez,
sep = ":")
#'
#'
#' ### Postsynaptic
#'
## ----prepare.postsynaptic--------------------------------------------------------------------------------------------------------
gene1<-read.delim("~/Documents/Synaptic proteome paper/db/Up_March2020/PSD_db_Oct20.txt",sep ='\t',header=TRUE, stringsAsFactors = FALSE)
gene1 <- gene1[, -c(dim(gene1)[2])]
g1.df<-gene1[,1:5]
names(g1.df)<-c('mgi',
'mouseentrez',
'mousename',
'humanentrez',
'humanname')
surKey<-paste(g1.df$mouseentrez,g1.df$humanentrez,sep=":")
idx<-match(surKey,fg.df$surkey)
g1.df$id<-fg.df$ID[idx]
gene1$id<-fg.df$ID[idx]
mg1<-melt(gene1[,c(6:dim(gene1)[2])],id="id")
mg1<-mg1[mg1$value==1,]
mg1$locID=1
idx<-match(mg1$variable,p.df$Name)
mg1$pmid<-p.df$PMID[idx]
mg1$taxId<-papers$taxId[idx]
mg1$methodId<-papers$methodId[idx]
l <- list()
for (i in 1:dim(brp)[1]){
if (any(mg1$variable == brp$Paper[i])){
mgt <- mg1[mg1$variable == brp$Paper[i],]
mgt$BrainRegionID <- idxBR[i]
l[[length(l)+1]] <- mgt
}
}
mag1 <-do.call(rbind,l)
#'
#' ### Presynaptic
## ----prepare.presynaptic---------------------------------------------------------------------------------------------------------
gene2<-read.delim("~/Documents/Synaptic proteome paper/db/Up_March2020/Pres_DB_April21.txt",sep ='\t',header=TRUE, stringsAsFactors = FALSE)
gene2 <- gene2[, -c(dim(gene2)[2])]
g2.df<-gene2[,c("MGI.ID",
"MOUSE.ENTREZ.ID",
"MOUSE.GENE.NAME",
"HUMAN.ENTREZ.ID",
"HUMAN.GENE.NAME")]
names(g2.df)<-c('mgi',
'mouseentrez',
'mousename',
'humanentrez',
'humanname')
surKey<-paste(g2.df$mouseentrez,g2.df$humanentrez,sep=":")
idx<-match(surKey,fg.df$surkey)
g2.df$id<-fg.df$ID[idx]
gene2$id<-fg.df$ID[idx]
mg2<-melt(gene2[,c(11:dim(gene2)[2])],id="id")
mg2<-mg2[mg2$value==1,]
mg2$locID=2
idx<-match(mg2$variable,p.df$Name)
mg2$pmid<-p.df$PMID[idx]
mg2$taxId<-papers$taxId[idx]
mg2$methodId<-papers$methodId[idx]
l <- list()
for (i in 1:dim(brp)[1]){
if (any(mg2$variable == brp$Paper[i])){
mgt <- mg2[mg2$variable == brp$Paper[i],]
mgt$BrainRegionID <- idxBR[i]
l[[length(l)+1]] <- mgt
}
}
mag2 <-do.call(rbind,l)
#'
#' ### Synaptosome
## ----prepare.synaptosome---------------------------------------------------------------------------------------------------------
gene3<-read.delim("~/Documents/Synaptic proteome paper/db/Up_March2020/Syn_DB_April21.txt",sep ='\t',header=TRUE, stringsAsFactors = FALSE)
g3.df<-gene3[,1:4]
names(g3.df)<-c('mouseentrez',
'mousename',
'humanentrez',
'humanname')
surKey<-paste(g3.df$mouseentrez,g3.df$humanentrez,sep=":")
idx<-match(surKey,fg.df$surkey)
g3.df$id<-fg.df$ID[idx]
gene3$id<-fg.df$ID[idx]
mg3<-melt(gene3[,c(5:dim(gene3)[2])],id="id")
mg3<-mg3[mg3$value==1,]
mg3$locID=3
idx<-match(mg3$variable,p.df$Name)
mg3$pmid<-p.df$PMID[idx]
mg3$taxId<-papers$taxId[idx]
mg3$methodId<-papers$methodId[idx]
l <- list()
for (i in 1:dim(brp)[1]){
if (any(mg3$variable == brp$Paper[i])){
mgt <- mg3[mg3$variable == brp$Paper[i],]
mgt$BrainRegionID <- idxBR[i]
l[[length(l)+1]] <- mgt
}
}
mag3 <-do.call(rbind,l)
#'
#' ### COmbine all localisation
#'
## ----combine.and.load------------------------------------------------------------------------------------------------------------
totGene<-rbind(mag1[,c("id","locID","pmid","taxId","methodId", 'BrainRegionID')],
mag2[,c("id","locID","pmid","taxId","methodId", 'BrainRegionID')],
mag3[,c("id","locID","pmid","taxId","methodId", 'BrainRegionID')])
names(totGene)<-c("GeneID","LocalisationID","PaperPMID","SpeciesTaxID",
"MethodID", 'BrainRegionID')
totGene<-totGene[,c("GeneID",
"PaperPMID",
"SpeciesTaxID",
"BrainRegionID",
"LocalisationID",
"MethodID")]
dbWriteTable(mydb, "papergene", totGene,append=TRUE)
#'
#' # PPI
## ----load.ppi--------------------------------------------------------------------------------------------------------------------
ppi.df<-read.delim("~/Documents/Synaptic proteome paper/db/Up_March2020/PPI_DB_April21.txt",sep = "\t", header = TRUE, stringsAsFactors = FALSE)
idxA<-match(ppi.df$entA,fg.df$HumanEntrez)
idxB<-match(ppi.df$entB,fg.df$HumanEntrez)
ppi.df$A<-fg.df$ID[idxA]
ppi.df$B<-fg.df$ID[idxB]
ppi.df$taxId<-ppi.df$taxA
ppi.df$ID<- 1:dim(ppi.df)[1]
ppi.t<-ppi.df[,c('ID','A','B','type','method','taxId')]
names(ppi.t)<-c('ID','A','B','type','method','taxID')
dbWriteTable(mydb, "ppi", ppi.t,append=TRUE)
#'
## ----load.paper.ppi--------------------------------------------------------------------------------------------------------------
pmidx<-match(ppi.df$pmid,papers$PubMed)
idx<-which(!is.na(pmidx))
pap.ppi<-data.frame(PMID=papers$PubMed[pmidx[idx]],PPID=ppi.df$ID[idx])
dbWriteTable(mydb, "PaperPPI", pap.ppi,append=TRUE)
length(which(is.na(pmidx)))
#'
#' # GO
## ----load.GO---------------------------------------------------------------------------------------------------------------------
bph <- read.csv("~/Documents/Synaptic proteome paper/db/Up_March2020/flatfile_Human_BP.csv", sep = "\t", header = FALSE)
bpm <- read.csv("~/Documents/Synaptic proteome paper/db/Up_March2020/flatfile_Mouse_BP.csv", sep = "\t", header = FALSE)
bpr <- read.csv("~/Documents/Synaptic proteome paper/db/Up_March2020/flatfile_Rat_BP.csv", sep = "\t", header = FALSE)
BP <- rbind(bph[, c(1,2)], bpm[, c(1,2)], bpr[, c(1,2)])
BP <- unique(BP)
names(BP) <- c("GOID", "Description")
BP$Domain <- "BP"
cch <- read.csv("~/Documents/Synaptic proteome paper/db/Up_March2020/flatfile_Human_CC.csv", sep = "\t", header = FALSE)
ccm <- read.csv("~/Documents/Synaptic proteome paper/db/Up_March2020/flatfile_Mouse_CC.csv", sep = "\t", header = FALSE)
ccr <- read.csv("~/Documents/Synaptic proteome paper/db/Up_March2020/flatfile_Rat_CC.csv", sep = "\t", header = FALSE)
CC <- rbind(cch[, c(1,2)], ccm[, c(1,2)], ccr[, c(1,2)])
CC <- unique(CC)
names(CC) <- c("GOID", "Description")
CC$Domain <- "CC"
mfh <- read.csv("~/Documents/Synaptic proteome paper/db/Up_March2020/flatfile_Human_MF.csv", sep = "\t", header = FALSE)
mfm <- read.csv("~/Documents/Synaptic proteome paper/db/Up_March2020/flatfile_Mouse_MF.csv", sep = "\t", header = FALSE)
mfr <- read.csv("~/Documents/Synaptic proteome paper/db/Up_March2020/flatfile_Rat_MF.csv", sep = "\t", header = FALSE)
MF <- rbind(mfh[, c(1,2)], mfm[, c(1,2)], mfr[, c(1,2)])
MF <- unique(MF)
names(MF) <- c("GOID", "Description")
MF$Domain <- "MF"
df.go <- rbind(BP,CC,MF)
dbWriteTable(mydb, "GO", df.go, append=TRUE)
#' # GoGene
## ----load.GoGene-----------------------------------------------------------------------------------------------------------------
bph<- read.csv("~/Documents/Synaptic proteome paper/db/Up_March2020/flatfile_Human_BP.csv", sep = "\t", header = FALSE)
bph$SpecieID <- "9606"
idx <- match(bph$V3,fg.df$HumanEntrez)
bph$GeneID <- fg.df$ID[idx]
bph.t <- bph[, c(5,4,1)]
head(bph.t)
names(bph.t) <- c("GeneID", "SpecieID","GOID")
dbWriteTable(mydb, "GOGene", bph.t, append=TRUE)
bpm<- read.csv("~/Documents/Synaptic proteome paper/db/Up_March2020/flatfile_Mouse_BP.csv", sep = "\t", header = FALSE)
bpm$SpecieID <- "10090"
idx <- match(bpm$V3,fg.df$MouseEntrez)
bpm$GeneID <- fg.df$ID[idx]
bpm.t <- bpm[, c(5,4,1)]
head(bpm.t)
names(bpm.t) <- c("GeneID", "SpecieID","GOID")
dbWriteTable(mydb, "GOGene", bpm.t, append=TRUE)
bpr<- read.csv("~/Documents/Synaptic proteome paper/db/Up_March2020/flatfile_Rat_BP.csv", sep = "\t", header = FALSE)
bpr$SpecieID <- "10116"
idx <- match(bpr$V3,fg.df$RatEntrez)
bpr$GeneID <- fg.df$ID[idx]
bpr.t <- bpr[, c(5,4,1)]
head(bpr.t)
names(bpr.t) <- c("GeneID", "SpecieID","GOID")
dbWriteTable(mydb, "GOGene", bpr.t, append=TRUE)
cch<- read.csv("~/Documents/Synaptic proteome paper/db/Up_March2020/flatfile_Human_CC.csv", sep = "\t", header = FALSE)
cch$SpecieID <- "9606"
idx <- match(cch$V3,fg.df$HumanEntrez)
cch$GeneID <- fg.df$ID[idx]
cch.t <- cch[, c(5,4,1)]
head(cch.t)
names(cch.t) <- c("GeneID", "SpecieID","GOID")
dbWriteTable(mydb, "GOGene", cch.t, append=TRUE)
ccm<- read.csv("~/Documents/Synaptic proteome paper/db/Up_March2020/flatfile_Mouse_CC.csv", sep = "\t", header = FALSE)
ccm$SpecieID <- "10090"
idx <- match(ccm$V3,fg.df$MouseEntrez)
ccm$GeneID <- fg.df$ID[idx]
ccm.t <- ccm[, c(5,4,1)]
head(ccm.t)
names(ccm.t) <- c("GeneID", "SpecieID","GOID")
dbWriteTable(mydb, "GOGene", ccm.t, append=TRUE)
ccr<- read.csv("~/Documents/Synaptic proteome paper/db/Up_March2020/flatfile_Rat_CC.csv", sep = "\t", header = FALSE)
ccr$SpecieID <- "10116"
idx <- match(ccr$V3,fg.df$RatEntrez)
ccr$GeneID <- fg.df$ID[idx]
ccr.t <- ccr[, c(5,4,1)]
head(ccr.t)
names(ccr.t) <- c("GeneID", "SpecieID","GOID")
dbWriteTable(mydb, "GOGene", ccr.t, append=TRUE)
mfh<- read.csv("~/Documents/Synaptic proteome paper/db/Up_March2020/flatfile_Human_MF.csv", sep = "\t", header = FALSE)
mfh$SpecieID <- "9606"
idx <- match(mfh$V3,fg.df$HumanEntrez)
mfh$GeneID <- fg.df$ID[idx]
mfh.t <- mfh[, c(5,4,1)]
head(mfh.t)
names(mfh.t) <- c("GeneID", "SpecieID","GOID")
dbWriteTable(mydb, "GOGene", mfh.t, append=TRUE)
mfm<- read.csv("~/Documents/Synaptic proteome paper/db/Up_March2020/flatfile_Mouse_MF.csv", sep = "\t", header = FALSE)
mfm$SpecieID <- "10090"
idx <- match(mfm$V3,fg.df$MouseEntrez)
mfm$GeneID <- fg.df$ID[idx]
mfm.t <- mfm[, c(5,4,1)]
head(mfm.t)
names(mfm.t) <- c("GeneID", "SpecieID","GOID")
dbWriteTable(mydb, "GOGene", mfm.t, append=TRUE)
mfr<- read.csv("~/Documents/Synaptic proteome paper/db/Up_March2020/flatfile_Rat_MF.csv", sep = "\t", header = FALSE)
mfr$SpecieID <- "10116"
idx <- match(mfr$V3,fg.df$RatEntrez)
mfr$GeneID <- fg.df$ID[idx]
mfr.t <- mfr[, c(5,4,1)]
head(mfr.t)
names(mfr.t) <- c("GeneID", "SpecieID","GOID")
dbWriteTable(mydb, "GOGene", mfr.t, append=TRUE)
#' # Disease
## ----Add.disease-----------------------------------------------------------------------------------------------------------------
hdo <- read.csv("~/Documents/Synaptic proteome paper/db/Up_March2020/flatfile_human_HDO.csv", sep = "\t", header = FALSE, stringsAsFactors = FALSE)
hdo <- hdo[, c(1,2)]
hdoU <- unique(hdo)
names(hdoU) <- c("HDOID","Description")
dbWriteTable(mydb, "Disease", hdoU, append=TRUE)
#' # DiseaseGene
#'
## ----add.diseaseGene-------------------------------------------------------------------------------------------------------------
hdo <- read.csv("~/Documents/Synaptic proteome paper/db/Up_March2020/flatfile_human_HDO.csv", sep = "\t", header = FALSE, stringsAsFactors = FALSE)
idx <- match(hdo$V3, fg.df$HumanEntrez)
hdo$GeneID <- fg.df$ID[idx]
hdog <- hdo[, c(4,1)]
names(hdog) <- c("GeneID", "HDOID")
dbWriteTable(mydb, "DiseaseGene", hdog, append=TRUE)
#'
#' # GeneToModel
#'
## ----add.model-------------------------------------------------------------------------------------------------------------------
gm <- read.csv("~/Documents/Synaptic proteome paper/db/Up_March2020/genes-in-models.csv", sep = ",", header = TRUE, stringsAsFactors = FALSE)
idx <- match(gm$ENTREZ.ID, fg.df$HumanEntrez)
gm$GeneID <- fg.df$ID[idx]
gmg <- gm[!is.na(gm$GeneID),]
gmgg <- gmg[, c(8,2,3)]
names(gmgg) <- c("GeneID","EntityID","PMID")
dbWriteTable(mydb, "GeneToModel", gmgg, append=TRUE)
#'
#'
#' # Close database
#'
## ----disconnect.db---------------------------------------------------------------------------------------------------------------
dbDisconnect(mydb)
#'
#'
#' ### Session Info
## ----sessionInfo, echo=FALSE, results='asis', class='text', warning=FALSE--------------------------------------------------------
c<-devtools::session_info()
pander(t(data.frame(c(c$platform))))
pander(as.data.frame(c$packages)[,-c(4,5,10,11)])
#'
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.