plotDimRed | R Documentation |
Plotting functions for spatial transcriptomics data.
plotDimRed(
spe,
plot_type = c("UMAP", "PCA"),
annotate = NULL,
feature_names = NULL,
assay_name = "counts",
update_dimnames = TRUE,
pal = NULL,
point_size = 0.3,
legend_point_size = 3,
text_by = NULL,
text_by_size = 5,
text_by_color = "black"
)
spe |
Input data, assumed to be a |
plot_type |
Type of reduced dimension plot. Possible options are "UMAP", "PCA", or any other set of reduced dimensions stored in the input object. Default = "UMAP". |
annotate |
Variable to show as annotations. This may be discrete or
continuous. For a discrete variable (e.g. cluster labels), this should be
the name of a column in |
feature_names |
Name of column in |
assay_name |
Name of |
update_dimnames |
Whether to update column names of |
pal |
Color palette for annotations. Options for discrete values are "libd_layer_colors", "Okabe-Ito", or any vector of color names or hex values. For continuous values, provide a vector of length 2 for the low and high range, e.g. c("gray90", "navy"). |
point_size |
Point size. Default = 0.3. |
legend_point_size |
Legend point size for discrete annotations. Default = 3. |
text_by |
Column name of annotation labels to display over each cluster
of points. This will usually be the same as |
text_by_size |
Text size for annotation labels over each cluster. Default = 5. |
text_by_color |
Color name or hex code for annotation labels. Default = "black". |
Function to create reduced dimension plot (e.g. PCA or UMAP) with additional optional annotations such as cluster labels, expression of a gene, or quality control metrics.
Returns a ggplot object, which may be further modified using ggplot functions.
Lukas M. Weber and Yixing E. Dong
library(STexampleData)
spe <- Visium_humanDLPFC()
# select spots over tissue
spe <- spe[, colData(spe)$in_tissue == 1]
# use small subset of data for this example
n <- 200
set.seed(123)
spe <- spe[, sample(seq_len(ncol(spe)), n)]
# calculate logcounts
library(scran)
spe <- logNormCounts(spe)
# identify top highly variable genes (HVGs)
is_mito <- grepl("(^MT-)|(^mt-)", rowData(spe)$gene_name)
spe <- spe[!is_mito, ]
dec <- modelGeneVar(spe)
top_hvgs <- getTopHVGs(dec, prop = 0.1)
# run dimensionality reduction
library(scater)
set.seed(123)
spe <- runPCA(spe, subset_row = top_hvgs)
set.seed(123)
spe <- runUMAP(spe, dimred = "PCA")
colnames(reducedDim(spe, "UMAP")) <- paste0("UMAP", 1:2)
# generate plot
plotDimRed(spe, plot_type = "UMAP", annotate = "ground_truth")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.