MAPParams-class | R Documentation |
These functions implement the T augmented Gaussian mixture (TAGM) model for mass spectrometry-based spatial proteomics datasets using the maximum a posteriori (MAP) optimisation routine.
## S4 method for signature 'MAPParams'
show(object)
logPosteriors(x)
tagmMapTrain(
object,
fcol = "markers",
method = "MAP",
numIter = 100,
mu0 = NULL,
lambda0 = 0.01,
nu0 = NULL,
S0 = NULL,
beta0 = NULL,
u = 2,
v = 10,
seed = NULL
)
tagmMapPredict(
object,
params,
fcol = "markers",
probJoint = FALSE,
probOutlier = TRUE
)
object |
An |
x |
An object of class 'MAPParams'. |
fcol |
The feature meta-data containing marker definitions.
Default is |
method |
A |
numIter |
The number of iterations of the expectation-maximisation algorithm. Default is 100. |
mu0 |
The prior mean. Default is |
lambda0 |
The prior shrinkage. Default is 0.01. |
nu0 |
The prior degreed of freedom. Default is
|
S0 |
The prior inverse-wishary scale matrix. Empirical prior used by default. |
beta0 |
The prior Dirichlet distribution concentration. Default is 1 for each class. |
u |
The prior shape parameter for Beta(u, v). Default is 2 |
v |
The prior shape parameter for Beta(u, v). Default is 10. |
seed |
The optional random number generator seed. |
params |
An instance of class |
probJoint |
A |
probOutlier |
A |
The tagmMapTrain
function generates the MAP parameters (object or class
MAPParams
) based on an annotated quantitative spatial proteomics dataset
(object of class MSnbase::MSnSet
). Both are then passed to the
tagmPredict
function to predict the sub-cellular localisation of protein
of unknown localisation. See the pRoloc-bayesian vignette for details and
examples. In this implementation, if numerical instability is detected in
the covariance matrix of the data a small multiple of the identity is
added. A message is printed if this conditioning step is performed.
tagmMapTrain
returns an instance of class MAPParams()
.
tagmPredict
returns an instance of class
MSnbase::MSnSet
containing the localisation predictions as
a new tagm.map.allocation
feature variable.
method
A character()
storing the TAGM method name.
priors
A list()
with the priors for the parameters
seed
An integer()
with the random number generation seed.
posteriors
A list()
with the updated posterior parameters
and log-posterior of the model.
datasize
A list()
with details about size of data
Laurent Gatto
Oliver M. Crook
A Bayesian Mixture Modelling Approach For Spatial Proteomics Oliver M Crook, Claire M Mulvey, Paul D. W. Kirk, Kathryn S Lilley, Laurent Gatto bioRxiv 282269; doi: https://doi.org/10.1101/282269
The plotEllipse()
function can be used to visualise
TAGM models on PCA plots with ellipses. The tagmMapTrain()
function to use the TAGM MAP method.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.