View source: R/machinelearning-functions-nb.R
nbClassification | R Documentation |
Classification using the naive Bayes algorithm.
nbClassification(
object,
assessRes,
scores = c("prediction", "all", "none"),
laplace,
fcol = "markers",
...
)
object |
An instance of class |
assessRes |
An instance of class
|
scores |
One of |
laplace |
If |
fcol |
The feature meta-data containing marker definitions.
Default is |
... |
Additional parameters passed to
|
An instance of class "MSnSet"
with
nb
and nb.scores
feature variables storing the
classification results and scores respectively.
Laurent Gatto
library(pRolocdata)
data(dunkley2006)
## reducing parameter search space and iterations
params <- nbOptimisation(dunkley2006, laplace = c(0, 5), times = 3)
params
plot(params)
f1Count(params)
levelPlot(params)
getParams(params)
res <- nbClassification(dunkley2006, params)
getPredictions(res, fcol = "naiveBayes")
getPredictions(res, fcol = "naiveBayes", t = 1)
plot2D(res, fcol = "naiveBayes")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.