View source: R/machinelearning-functions-rf.R
rfClassification | R Documentation |
Classification using the random forest algorithm.
rfClassification(
object,
assessRes,
scores = c("prediction", "all", "none"),
mtry,
fcol = "markers",
...
)
object |
An instance of class |
assessRes |
An instance of class
|
scores |
One of |
mtry |
If |
fcol |
The feature meta-data containing marker definitions.
Default is |
... |
Additional parameters passed to
|
An instance of class "MSnSet"
with
rf
and rf.scores
feature variables storing the
classification results and scores respectively.
Laurent Gatto
library(pRolocdata)
data(dunkley2006)
## reducing parameter search space and iterations
params <- rfOptimisation(dunkley2006, mtry = c(2, 5, 10), times = 3)
params
plot(params)
f1Count(params)
levelPlot(params)
getParams(params)
res <- rfClassification(dunkley2006, params)
getPredictions(res, fcol = "rf")
getPredictions(res, fcol = "rf", t = 0.75)
plot2D(res, fcol = "rf")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.