View source: R/machinelearning-functions-PerTurbo.R
perTurboClassification | R Documentation |
Classification using the PerTurbo algorithm.
perTurboClassification(
object,
assessRes,
scores = c("prediction", "all", "none"),
pRegul,
sigma,
inv,
reg,
fcol = "markers"
)
object |
An instance of class |
assessRes |
An instance of class
|
scores |
One of |
pRegul |
If |
sigma |
If |
inv |
The type of algorithm used to invert the matrix.
Values are : "Inversion Cholesky" ( |
reg |
The type of regularisation of matrix. Values are
"none", "trunc" or "tikhonov". Default value is
|
fcol |
The feature meta-data containing marker definitions.
Default is |
An instance of class "MSnSet"
with
perTurbo
and perTurbo.scores
feature variables
storing the classification results and scores respectively.
Thomas Burger and Samuel Wieczorek
N. Courty, T. Burger, J. Laurent. "PerTurbo: a new classification algorithm based on the spectrum perturbations of the Laplace-Beltrami operator", The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2011), D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part I, LNAI 6911, pp. 359 - 374, Athens, Greece, September 2011.
library(pRolocdata)
data(dunkley2006)
## reducing parameter search space
params <- perTurboOptimisation(dunkley2006,
pRegul = 2^seq(-2,2,2),
sigma = 10^seq(-1, 1, 1),
inv = "Inversion Cholesky",
reg ="tikhonov",
times = 3)
params
plot(params)
f1Count(params)
levelPlot(params)
getParams(params)
res <- perTurboClassification(dunkley2006, params)
getPredictions(res, fcol = "perTurbo")
getPredictions(res, fcol = "perTurbo", t = 0.75)
plot2D(res, fcol = "perTurbo")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.