R/analyzeChr.R

Defines functions .calcFstatCutoff analyzeChr

Documented in analyzeChr

#' Run the derfinder analysis on a chromosome
#'
#' This is a major wrapper for running several key functions from this package.
#' It is meant to be used after [loadCoverage] has been used for a
#' specific chromosome. The steps run include [makeModels],
#' [preprocessCoverage], [calculateStats], [calculatePvalues]
#' and annotating with [annotateTranscripts][bumphunter::annotateTranscripts] and
#' [matchGenes][bumphunter::matchGenes].
#'
#' @param chr Used for naming the output files when `writeOutput=TRUE` and
#' the resulting `GRanges` object.
#' @param models The output from [makeModels].
#' @param cutoffPre This argument is passed to [preprocessCoverage]
#' (`cutoff`).
#' @inheritParams preprocessCoverage
#' @param cutoffFstat This is used to determine the cutoff argument of
#' [calculatePvalues] and it's behaviour is determined by
#' `cutoffType`.
#' @param cutoffType If set to `empirical`, the `cutoffFstat`
#' (example: 0.99) quantile is used via [quantile]. If set to
#' `theoretical`, the theoretical `cutoffFstats` (example: 1e-08) is
#' calculated via [qf]. If set to `manual`, `cutoffFstats` is
#' passed to [calculatePvalues] without any other calculation.
#' @inheritParams calculatePvalues
#' @param groupInfo A factor specifying the group membership of each sample
#' that can later be used with the plotting functions in the
#' `derfinderPlot` package.
#' @param txdb This argument is passed to
#' [annotateTranscripts][bumphunter::annotateTranscripts]. If `NULL`,
#' [TxDb.Hsapiens.UCSC.hg19.knownGene][TxDb.Hsapiens.UCSC.hg19.knownGene::TxDb.Hsapiens.UCSC.hg19.knownGene]
#' is used.
#' @param writeOutput If `TRUE`, output Rdata files are created at each
#' step inside a directory with the chromosome name (example: 'chr21' if
#' `chrnum='21'`). One Rdata file is created for each component described
#' in the return section.
#' @param runAnnotation If `TRUE` [annotateTranscripts][bumphunter::annotateTranscripts]
#' and [matchGenes][bumphunter::matchGenes] are run. Otherwise these steps are skipped.
#' @param ... Arguments passed to other methods and/or advanced arguments.
#' Advanced arguments:
#' \describe{
#' \item{verbose }{ If `TRUE` basic status updates will be printed along
#' the way. Default `TRUE`.}
#' \item{scalefac }{ This argument is passed to [preprocessCoverage].}
#' \item{chunksize }{ This argument is passed to [preprocessCoverage].}
#' \item{returnOutput }{ If `TRUE`, it returns a list with the results
#' from each step. Otherwise, it returns `NULL`. Default: the opposite of
#' `writeOutput`.}
#' }
#' Passed to [extendedMapSeqlevels], [preprocessCoverage],
#' [calculateStats], [calculatePvalues],
#' [annotateTranscripts][bumphunter::annotateTranscripts], [matchGenes][bumphunter::matchGenes],
#' and [define_cluster].
#' @inheritParams findRegions
#'
#' @return If `returnOutput=TRUE`, a list with six components:
#' \describe{
#' \item{timeinfo }{ The wallclock timing information for each step.}
#' \item{optionsStats }{ The main options used when running this function.}
#' \item{coveragePrep }{ The output from [preprocessCoverage].}
#' \item{fstats}{ The output from [calculateStats].}
#' \item{regions}{ The output from [calculatePvalues].}
#' \item{annotation}{ The output from [matchGenes][bumphunter::matchGenes].}
#' }
#' These are the same components that are written to Rdata files if
#' `writeOutput=TRUE`.
#'
#' @details
#' If you are working with data from an organism different from 'Homo sapiens'
#' specify so by setting the global 'species' and 'chrsStyle' options. For
#' example:
#' `options(species = 'arabidopsis_thaliana')`
#' `options(chrsStyle = 'NCBI')`
#'
#' @author Leonardo Collado-Torres
#' @seealso [makeModels], [preprocessCoverage],
#' [calculateStats], [calculatePvalues],
#' [annotateTranscripts][bumphunter::annotateTranscripts], [matchGenes][bumphunter::matchGenes]
#' @export
#' @import S4Vectors
#' @importFrom bumphunter annotateTranscripts matchGenes
#' @importFrom stats qf
#'
#' @examples
#' ## Collapse the coverage information
#' collapsedFull <- collapseFullCoverage(list(genomeData$coverage),
#'     verbose = TRUE
#' )
#'
#' ## Calculate library size adjustments
#' sampleDepths <- sampleDepth(collapsedFull,
#'     probs = c(0.5), nonzero = TRUE,
#'     verbose = TRUE
#' )
#'
#' ## Build the models
#' groupInfo <- genomeInfo$pop
#' adjustvars <- data.frame(genomeInfo$gender)
#' models <- makeModels(sampleDepths, testvars = groupInfo, adjustvars = adjustvars)
#'
#' ## Analyze the chromosome
#' results <- analyzeChr(
#'     chr = "21", coverageInfo = genomeData, models = models,
#'     cutoffFstat = 1, cutoffType = "manual", groupInfo = groupInfo, mc.cores = 1,
#'     writeOutput = FALSE, returnOutput = TRUE, method = "regular",
#'     runAnnotation = FALSE
#' )
#' names(results)
analyzeChr <- function(
        chr, coverageInfo, models, cutoffPre = 5,
        cutoffFstat = 1e-08, cutoffType = "theoretical", nPermute = 1,
        seeds = as.integer(gsub("-", "", Sys.Date())) + seq_len(nPermute),
        groupInfo, txdb = NULL, writeOutput = TRUE, runAnnotation = TRUE,
        lowMemDir = file.path(chr, "chunksDir"), smooth = FALSE, weights = NULL,
        smoothFunction = bumphunter::locfitByCluster, ...) {
    ## Run some checks
    stopifnot(length(intersect(cutoffType, c(
        "empirical", "theoretical",
        "manual"
    ))) == 1)
    stopifnot(is.factor(groupInfo))
    stopifnot(is.character(chr))

    ## Advanged argumentsa

    ## Use UCSC names for homo_sapiens by default
    chr <- extendedMapSeqlevels(chr, ...)

    # @param verbose If \code{TRUE} basic status updates will be printed along the
    # way.
    verbose <- .advanced_argument("verbose", TRUE, ...)



    # @param scalefac This argument is passed to \link{preprocessCoverage}.
    scalefac <- .advanced_argument("scalefac", 32, ...)



    # @param chunksize This argument is passed to \link{preprocessCoverage}.
    chunksize <- .advanced_argument("chunksize", NULL, ...)


    # @param returnOutput If \code{TRUE}, it returns a list with the results from
    # each step. Otherwise, it returns \code{NULL}.
    returnOutput <- .advanced_argument("returnOutput", !writeOutput, ...)


    ## Begin timing
    timeinfo <- NULL
    ## Init
    timeinfo <- c(timeinfo, list(Sys.time()))

    ## Drop unused levels in groupInfo
    groupInfo <- droplevels(groupInfo)

    ## Setup
    timeinfo <- c(timeinfo, list(Sys.time()))

    ## pre-process the coverage data with automatic chunks
    ## depending on the number of cores
    if (verbose) {
        message(paste(
            Sys.time(),
            "analyzeChr: Pre-processing the coverage data"
        ))
    }
    prep <- preprocessCoverage(
        coverageInfo = coverageInfo,
        groupInfo = groupInfo, cutoff = cutoffPre, lowMemDir = lowMemDir, ...
    )
    rm(coverageInfo)

    ## prepData
    timeinfo <- c(timeinfo, list(Sys.time()))

    ## Save the prepared data
    if (writeOutput) {
        save(prep, file = file.path(chr, "coveragePrep.Rdata"))
    }
    ## savePrep
    timeinfo <- c(timeinfo, list(Sys.time()))

    ## Run calculateStats
    if (verbose) {
        message(paste(Sys.time(), "analyzeChr: Calculating statistics"))
    }
    fstats <- calculateStats(
        coveragePrep = prep, models = models,
        lowMemDir = lowMemDir, ...
    )

    ## calculateStats
    timeinfo <- c(timeinfo, list(Sys.time()))

    ## Save the output from calculateStats
    if (writeOutput) {
        save(fstats, file = file.path(chr, "fstats.Rdata"))
    }

    ## saveStats
    timeinfo <- c(timeinfo, list(Sys.time()))

    ## Choose the cutoff
    cutoff <- .calcFstatCutoff(cutoffType, cutoffFstat, fstats, models)

    ## Save parameters used for running calculateStats
    optionsStats <- list(
        models = models, cutoffPre = cutoffPre,
        scalefac = scalefac, chunksize = chunksize,
        cutoffFstat = cutoffFstat, cutoffType = cutoffType,
        nPermute = nPermute, seeds = seeds, groupInfo = groupInfo,
        lowMemDir = lowMemDir, analyzeCall = match.call(),
        cutoffFstatUsed = cutoff, smooth = smooth,
        smoothFunction = smoothFunction, weights = weights, ...
    )

    if (writeOutput) {
        dir.create(chr, showWarnings = FALSE, recursive = TRUE)
        save(optionsStats, file = file.path(chr, "optionsStats.Rdata"))
    }

    ## saveStatsOpts
    timeinfo <- c(timeinfo, list(Sys.time()))

    ## Calculate p-values and find regions
    if (verbose) {
        message(paste(Sys.time(), "analyzeChr: Calculating pvalues"))
    }

    if (verbose) {
        message(paste(
            Sys.time(), "analyzeChr: Using the following",
            cutoffType, "cutoff for the F-statistics", cutoff
        ))
    }

    regions <- calculatePvalues(
        coveragePrep = prep, models = models,
        fstats = fstats, nPermute = nPermute, seeds = seeds,
        chr = chr, cutoff = cutoff, lowMemDir = lowMemDir, smooth = smooth,
        smoothFunction = smoothFunction, weights = weights, ...
    )
    if (!returnOutput) {
        rm(prep)
    }

    ## calculatePValues
    timeinfo <- c(timeinfo, list(Sys.time()))

    ## Save the output from calculatePvalues
    if (writeOutput) {
        save(regions, file = file.path(chr, "regions.Rdata"))
    }

    ## saveRegs
    timeinfo <- c(timeinfo, list(Sys.time()))

    ## Annotate
    if (verbose) {
        message(paste(Sys.time(), "analyzeChr: Annotating regions"))
    }

    if (!is.null(regions$regions) & runAnnotation) {
        if (is.null(txdb)) {
            txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene::TxDb.Hsapiens.UCSC.hg19.knownGene
        }
        genes <- .runFunFormal(annotateTranscripts, txdb = txdb, ...)
        annotation <- .runFunFormal(matchGenes,
            x = regions$regions,
            subject = genes, ...
        )
    } else {
        annotation <- NULL
    }

    ## Annotate
    timeinfo <- c(timeinfo, list(Sys.time()))

    if (writeOutput) {
        save(annotation, file = file.path(chr, "annotation.Rdata"))
    }

    ## saveAnnotation
    timeinfo <- c(timeinfo, list(Sys.time()))

    ## Save timing information
    timeinfo <- do.call(c, timeinfo)
    names(timeinfo) <- c(
        "init", "setup", "prepData", "savePrep",
        "calculateStats", "saveStats", "saveStatsOpts", "calculatePvalues",
        "saveRegs", "annotate", "saveAnno"
    )
    if (writeOutput) {
        save(timeinfo, file = file.path(chr, "timeinfo.Rdata"))
    }

    if (returnOutput) {
        result <- list(
            timeinfo = timeinfo, optionsStats = optionsStats,
            coveragePrep = prep, fstats = fstats, regions = regions,
            annotation = annotation
        )
    } else {
        result <- NULL
    }

    ## Done
    return(invisible(result))
}

## Helper function for calculating the F-stat cutoff
.calcFstatCutoff <- function(cutoffType, cutoffFstat, fstats, models) {
    if (cutoffType == "empirical") {
        if (cutoffFstat == 1e-08) {
            cutoffFstat <- 0.99
            warning("Switching 'cutoffFstat' to 0.99 as the user probably forgot to change its default value.")
        }
        cutoff <- quantile(as.numeric(fstats), cutoffFstat, na.rm = TRUE)
    } else if (cutoffType == "theoretical") {
        n <- dim(models$mod)[1]
        df1 <- dim(models$mod)[2]
        df0 <- dim(models$mod0)[2]
        cutoff <- qf(cutoffFstat, df1 - df0, n - df1, lower.tail = FALSE)
    } else if (cutoffType == "manual") {
        cutoff <- cutoffFstat
    }
    return(cutoff)
}
lcolladotor/derfinder documentation built on May 4, 2024, 5:38 p.m.