R/spliceSummary-method.R

Defines functions isMatchedWithModel isJunctionRead

Documented in isJunctionRead isMatchedWithModel

setMethod("spliceSummary", c("GenomicRanges", "GRangesList"), function(obj,
                                                             model,
                                                             weighted = TRUE){
  lst <- lapply(model, function(md){
    logi <- isMatchedWithModel(md, obj)
    if(!length(logi))
      logi <- rep(FALSE, length(obj))
    logi
  })
  res <- do.call(rbind, lst)
  if(weighted){
    res.s <- apply(res, 2, sum)
    idx.all <- res.s > 1
    res.n <- as.numeric(res)
    res.m <- matrix(res.n, nrow = nrow(res))
    res.m[,idx.all] <- res.m[,idx.all]/res.s[idx.all]
    freq <- apply(res.m, 1, sum)
  }else{
    freq <- apply(res, 1, sum)
  }
  names(freq) <- names(model)
  freq
})

setMethod("spliceSummary", c("character", "GRangesList"), function(obj,
                                                                   model,
                                                                   weighted = TRUE){

  if(tools::file_ext(obj) == "bam"){
    ## bf <- BamFile(obj)
    require(Rsamtools)    
  }else{
    stop("Only support file with .bam extention name now") 
  }
  
  ## if(missing(which))
  which <- range(reduce(unlist(model)))
  
  ga <- readGAlignments(obj, param = ScanBamParam(which = which),
                             use.names = TRUE)
  ## reduce model
  ## assumption here is that: contains unoverlaped exons.
  ## must contain exon id            
  exons <- reduce(unlist(model), ignore.strand = TRUE);
  ## first leave only junction read
  idx <- sapply(cigar(ga), isJunctionRead)
  ga.junction <- ga[idx]
  gr.junction <- as(ga.junction, "GRanges")
  spliceSummary(gr.junction, model = model, weighted = weighted)
})


isJunctionRead <- function(cigar){
  grepl("N", cigar)
}

## model is a GRanges containing exons, sgr is a single gr object
isMatchedWithModel <- function(model, gr){
  ## require on the same chromosome now
  if(length(unique(as.character(seqnames(model)))) > 1)
    stop("only support single chromosome summary now")
  if(unique(as.character(seqnames(model))) !=
     unique(as.character(seqnames(gr))))
    stop("Cannot be mapped due to different space")
  model <- sort(model)
  ## do we consider strand information?
  countOverlaps(ranges(gr), ranges(model)) == 2
}

setMethod("spliceSummary", c("GenomicRanges", "GenomicRanges"), function(obj,
                                                                         model,
                                                                       model_id = NULL){
  ov <- findOverlaps(ranges(obj), ranges(model))
  mm <- as.matrix(ov)
  res <- split(mm[,2], mm[,1])
  idx <- unlist(lapply(split(mm[,2], mm[,1]),length)) > 1
  res <- lapply(res[idx], function(x){
    if(!is.null(model_id))
      x <- values(model)[,model_id][x]
    paste(head(x, 1), tail(x, 1), sep = "-")
  })
  nms <- names(table(unlist(res)))
  res <- as.numeric(table(unlist(res)))
  names(res) <- nms
  res
})


setMethod("spliceSummary", c("character", "GenomicRanges"), function(obj,
                                                                   model,
                                                                   model_id = NULL){

  if(tools::file_ext(obj) == "bam"){
    require(Rsamtools)    
  }else{
    stop("Only support file with .bam extention name now") 
  }
  ## if(missing(which))
  which <- range(model)
  
  ga <- readGAlignments(obj, param = ScanBamParam(which = which),
                             use.names = TRUE)
  ## first leave only junction read
  grl <- grglist(ga)
  idx <- elementNROWS(grl) > 1
  ga.junction <- ga[idx]
  gr.junction <- as(ga.junction, "GRanges")
  spliceSummary(gr.junction, model = model, model_id = model_id)
})

## functions downbelow from workshop by Michael Lawrence
## will be implmented by into his package, so I will replace this function later
## splicefun <- function(files, txdb, which, id,  xlim, txdb.chr.pre = character(), weight = 1){
##   elementGaps <- function(x) {
##     x_flat <- unlist(x, use.names = FALSE)
##     egaps <- gaps(ranges(x))
##     first_segment <- start(PartitioningByWidth(x))
##     sn <- seqnames(x_flat)[first_segment][togroup(egaps)]
##     strand <- strand(x_flat)[first_segment][togroup(egaps)]
##     relist(GRanges(sn, unlist(egaps, use.names = FALSE), 
##                    strand, seqlengths = seqlengths(x)), 
##            egaps)
##   }

##   pairReadRanges <- function(reads) {
##     pairs <- split(unlist(reads, use.names=FALSE),
##                    factor(names(reads)[togroup(reads)], 
##                           unique(names(reads))))
##     metadata(pairs) <- metadata(reads)
##     xs <- values(reads)$XS
##     has_xs <- !is.na(xs)
##     pair_xs <- setNames(rep.int(NA, length(pairs)), 
##                         names(pairs))
##     pair_xs[names(reads)[has_xs]] <- xs[has_xs]
##     values(pairs)$XS <- unname(pair_xs)
##     pairs
##   }  

##   strandFromXS <- function(pairs) {
##     xs <- values(pairs)$XS
##     strand <- ifelse(!is.na(xs) & xs != "?", xs, "*")
##     strand(pairs) <- relist(Rle(strand, elementNROWS(pairs)), 
##                             pairs)
##     pairs
##   }

##   gr2key <- function(x) {
##     paste(seqnames(x), start(x), end(x), strand(x), 
##           sep = ":")
##   }

##   key2gr <- function(x, ...) {
##     key_mat <- matrix(unlist(strsplit(x, ":", fixed=TRUE)), 
##                       nrow = 4)
##     GRanges(key_mat[1,],
##             IRanges(as.integer(key_mat[2,]), 
##                     as.integer(key_mat[3,])),
##             key_mat[4,], ...)
##   }
##   findIsoformOverlaps <- function(pairs) {
##     splices <- values(pairs)$splices
##     hits <- findOverlaps(pairs, tx)
##     hit_pairs <- ranges(pairs)[queryHits(hits)]
##     hit_splices <- ranges(splices)[queryHits(hits)]
##     hit_tx <- ranges(tx)[subjectHits(hits)]
##     read_within <- 
##       elementNROWS(setdiff(hit_pairs, hit_tx)) == 0L
##     tx_within <- 
##       elementNROWS(intersect(hit_tx, hit_splices)) == 0L
##     compatible <- read_within & tx_within
##     compat_hits <- hits[compatible]
##     reads_unique <- tabulate(queryHits(compat_hits), 
##                              queryLength(compat_hits)) == 1L
##     unique <- logical(length(hits))
##     unique[compatible] <- reads_unique[queryHits(compat_hits)]
##     strand_specific <- 
##       all(strand(pairs) != "*")[queryHits(hits)]
##     values(hits) <- DataFrame(strand_specific,
##                               compatible,
##                               unique)
##     list(hits = hits,
##          compatible = compatible,
##          strand_specific = strand_specific)
##   }
##   countIsoformHits <- function(hits, compatible, strand_specific) {
##     countByTx <- function(x) {
##       tabulate(subjectHits(hits)[x], subjectLength(hits))
##     }
##     compatible_strand <- 
##       countByTx(with(values(hits), 
##                      compatible & strand_specific))
##     counts <- DataFrame(compatible_strand,
##                         lapply(values(hits)[-1], countByTx))
##     counts
##   }

##   summarizeSplices <- function(reads) {
##     splices <- values(reads)$splices
##     splices_flat <- unlist(splices, use.names = FALSE)
##     if(length(splices_flat)){    
##     splice_table <- table(gr2key(splices_flat))
##     splice_summary <- 
##       key2gr(names(splice_table), 
##              score = as.integer(splice_table),
##              novel = !names(splice_table) %in% tx_keys,
##              seqlengths = seqlengths(splices))
##   }else{
##     splice_summary <- GRanges()
##   }
##     splice_summary
##   }

##   getUniqueReads <- function(reads, hits) {
##     sel <- values(hits)$unique & 
##     subjectHits(hits) %in% c(1, 4)
##     reads[unique(queryHits(hits)[sel])]
##   }

##   message("Parsing gene structure from txdb...")
##   if(!missing(id)){
##   aldoa_gr <- exons(txdb, columns = c("tx_id", "gene_id"),
##                           filter = list(gene_id = id))
##   aldoa_gr <- keepSeqlevels(aldoa_gr, unique(as.character(seqnames(aldoa_gr))))
##   ## FIXME later
##   nms <- as.character(names(seqlengths(aldoa_gr)))
##   nms.new <- paste(txdb.chr.pre, nms, sep = "")
##   names(nms.new) <- nms
##   aldoa_gr <- renameSeqlevels(aldoa_gr, nms.new)
##   aldoa_range <- range(aldoa_gr)
##   wh <- aldoa_range  
##   aldoa_vals <- values(aldoa_gr)
##   tx <- multisplit(aldoa_gr, aldoa_vals$tx_id)
##   tx_to_val <- match(names(tx), unlist(aldoa_vals$tx_id))
##   values(tx)$gene_id <- 
##     rep(unlist(aldoa_vals$gene_id), 
##         elementNROWS(aldoa_vals$tx_id))[tx_to_val]
##   values(tx)$tx_id <- names(tx)
## }else if(!missing(which) & is(which, "GRanges")){
##     isActiveSeq(txdb)[seqlevels(txdb)] <- FALSE
##     seqnms <- as.character(unique(seqnames(which)))
##     seqnms <- gsub(txdb.chr.pre, "", seqnms)
##     isActiveSeq(txdb)[seqnms] <- TRUE
##     ## aldoa_gr <- exons(txdb, columns = c("tx_id", "gene_id"))
##     ## aldoa_gr <- keepSeqlevels(aldoa_gr, unique(as.character(seqnames(aldoa_gr))))
##     ## nms <- as.character(names(seqlengths(aldoa_gr)))
##     ## nms.new <- paste(txdb.chr.pre, nms, sep = "")
##     ## names(nms.new) <- nms
##     ## aldoa_gr <- renameSeqlevels(aldoa_gr, nms.new)
##     ## aldoa_gr <- subsetByOverlaps(aldoa_gr, which)
##     ## aldoa_range <- range(aldoa_gr)
##     aldoa_range <- which
##     exons_grl <- exonsBy(txdb)
##     gr.l <- stack(exons_grl, ".sample")
##     gr.l <- keepSeqlevels(gr.l, unique(as.character(seqnames(gr.l))))
##     nms <- as.character(names(seqlengths(gr.l)))
##     nms.new <- paste(txdb.chr.pre, nms, sep = "")
##     names(nms.new) <- nms
##     gr.l <- renameSeqlevels(gr.l, nms.new)
##       exons_grl <- split(gr.l, values(gr.l)$.sample)
##      ans <- subsetByOverlaps(exons_grl, which)
##     values(ans)$tx_id <- names(ans)
##     tx_gr <- transcripts(txdb, columns = c("tx_id", "gene_id"))
##     values(ans)$gene_id <- 
##       drop(values(tx_gr)$gene_id)[match(names(ans), 
##                                         values(tx_gr)$tx_id)]
##     tx <- ans
##     ## wh <- aldoa_range
##     ## aldoa_vals <- values(aldoa_gr)
##     ## tx <- multisplit(aldoa_gr, aldoa_vals$tx_id)
##     ## tx_to_val <- match(names(tx), unlist(aldoa_vals$tx_id))
##     ## values(tx)$gene_id <- 
##     ##   rep(unlist(aldoa_vals$gene_id), 
##     ##       elementNROWS(aldoa_vals$tx_id))[tx_to_val]
##     ## values(tx)$tx_id <- names(tx)
## }

##   message("Parsing bam files")
##   bamFiles <- Rsamtools::BamFileList(files)

##   message("Analysing...")
##   introns <- elementGaps(tx)
##   introns_flat <- unlist(introns, use.names = FALSE)
##   tx_keys <- gr2key(introns_flat)

##   readReadRanges <- function(bam) {
##     param <- ScanBamParam(tag = "XS", which = aldoa_range)
##     ga <- readGAlignments(path(bam), 
##                           use.names = TRUE, 
##                           param = param)
##     reads <- grglist(ga)
##     metadata(reads)$bamfile <- bam
##     splices <- elementGaps(reads)
##     values(splices)$XS <- values(reads)$XS
##     pairs <- pairReadRanges(reads)
##     pairs <- strandFromXS(pairs)
##     splices <- pairReadRanges(splices)
##     splices <- strandFromXS(splices)
##     values(pairs)$splices <- splices
##     pairs
##   }


##   N <- length(bamFiles)
##   nms <- names(bamFiles)
##   lst_hits <- lst_counts <- lst_splices <- lst_rr <- list()
##   message("parsing hits/counts/splcies")
##   for(i in 1:N){
##     bf <- bamFiles[[i]]
##     rr <- readReadRanges(bf)
##     lst_rr <- c(lst_rr, rr)
##     hits.lst <- findIsoformOverlaps(rr)
##     lst_hits <- c(lst_hits, hits.lst$hits)
##     lst_counts <- c(lst_counts, countIsoformHits(hits.lst$hits, hits.lst$compatible, hits.lst$strand_specific))
##     lst_splices <- c(lst_splices, summarizeSplices(rr))
##   }
##   names(lst_hits) <- nms
##   names(lst_counts) <- nms
##   names(lst_splices) <- nms
##   names(lst_rr) <- nms
##   ## normal <- readReadRanges(bamFiles)
##   ## tumor <- readReadRanges(bamFiles$tumor)
  
##   ## normal_hits <- findIsoformOverlaps(normal)
##   ## normal_counts <- countIsoformHits(normal_hits)
##   ## normal_splices <- summarizeSplices(normal)

##   ## tumor_hits <- findIsoformOverlaps(tumor)
##   ## tumor_counts <- countIsoformHits(tumor_hits)
##   ## tumor_splices <- summarizeSplices(tumor)


## ###################################################
## ### code chunk number 39: combine-samples
## ###################################################
##   assays <- do.call(mapply, c(list(cbind), lst_counts, list(SIMPLIFY = FALSE)))
##   ## assays <- mapply(cbind, normal_counts, SIMPLIFY = FALSE)
##   ## assays <- mapply(cbind, normal_counts, tumor_counts, 
##   ##                  SIMPLIFY = FALSE)
##   colData <- DataFrame(tumorStatus =  names(bamFiles))
##   rownames(colData) <- colData$tumorStatus
##   se <- SummarizedExperiment(assays, tx, colData)

## ###################################################
## ### code chunk number 40: order-se
## ###################################################
##   uc <- assay(se, "unique")
##   uc_ord <- order(rowSums(uc), decreasing = TRUE)
##   uc_top <- uc[head(uc_ord, 2),]
##   ## fisher.test(uc_top)$estimate

## ###################################################
## ### code chunk number 41: get-unique-reads
## ###################################################
##   lst_uniq <- lapply(1:N, function(i){
##     getUniqueReads(lst_rr[[i]], lst_hits[[i]])
##   })
##   names(lst_uniq) <- nms
##   ## normal_uniq <- getUniqueReads(normal, normal_hits)
##   ## tumor_uniq <- getUniqueReads(tumor, tumor_hits)
##   both_uniq <- do.call(mstack, lapply(lst_uniq, unlist))

## ###################################################
## ### code chunk number 42: combine-splices
## ###################################################
##   lst_uniq_splices <- lapply(lst_uniq, summarizeSplices)
##   names(lst_uniq_splices) <- nms
##   uniq_splices <- do.call(mstack, lst_uniq_splices)
##   all_splices <- do.call(mstack, lst_splices)
##   novel_splices <- all_splices[values(all_splices)$novel]
##   ## novel_splices <-  all_splices[values(all_splices)$novel &
##   ##                               values(all_splices)$score == 9]
##   ## novel_splices <-  all_splices[values(all_splices)$novel &
##   ##                               values(all_splices)$score == 9]
##   ## uniq_novel_splices <- c(uniq_splices, novel_splices)
##   ## uniq_novel_splices <- c(uniq_splices, all_splices)
##   uniq_novel_splices <- c(uniq_splices, novel_splices)  
##   both_uniq <- keepSeqlevels(both_uniq, unique(as.character(seqnames(both_uniq))))
##   .wt <- max(width(uniq_novel_splices))/max(coverage(both_uniq)) * weight
##   .wt <- as.numeric(.wt)
##   aes.res <- do.call(aes,list(size = substitute(score), 
##                               height = substitute(width/.wt, list(.wt = .wt)),
##                               color = substitute(novel)))

##   message("Constructing splicing graphics....")
##   p.novel <- do.call(geom_arch, c(list(data = uniq_novel_splices,
##                                     ylab = "coverage",
##                                        rect.height = 0), list(aes.res)))
##   p.s <- ggplot() + p.novel + do.call(stat_coverage, list(data = both_uniq, facets = name~.))
##   message("Constructing gene model....")
##   if(length(txdb.chr.pre))
##     wh <- GRanges(gsub(txdb.chr.pre, "", as.character(seqnames(wh))),
##                   ranges(wh))
##   ## browser()
##   tx_un <- stack(tx, ".sample")
##   tx_cur <- keepSeqlevels(tx_un, unique(as.character(seqnames(tx_un))))
##   tx_cur <- tx_cur[, setdiff(colnames(values(tx_cur)), c("tx_id", "gene_id"))]
##   tx_cur <- split(tx_cur, values(tx_cur)$.sample)
##   tx_track <- do.call(autoplot, list(object = tx_cur, geom = "alignment", ylab = ""))
##   ## tx_track <- autoplot(tx_16, geom = "alignment", ylab = "")
##   ## tx_track <- do.call(autoplot, list(object = txdb, which = wh))
##   if(missing(xlim))
##     xlim <- c(start(wh), end(wh))
##   tracks(p.s, tx_track, xlim  = xlim, heights = c(3, 1))
## }
lawremi/biovizBase documentation built on Dec. 21, 2021, 9:42 a.m.