require(testthat)
require(matter)
context("signal-processing-2")
test_that("filter 2d", {
set.seed(1, kind="default")
i <- seq(-4, 4, length.out=12)
j <- seq(1, 3, length.out=9)
co <- expand.grid(i=i, j=j)
y <- matrix(atan(co$i / co$j), nrow=12, ncol=9)
y <- 10 * (y - min(y)) / diff(range(y))
x <- y + 2.5 * runif(length(y))
w <- dnorm((-2):2) %o% dnorm((-2):2)
w <- w / sum(w)
x1 <- filt2_ma(x, width=5)
x2 <- filt2_gauss(x, width=5)
expect_equal(mean(x[1:5,1:5]), x1[3,3])
expect_equal(mean(x[1:5,5:9]), x1[3,7])
expect_equal(mean(x[8:12,1:5]), x1[10,3])
expect_equal(mean(x[8:12,5:9]), x1[10,7])
expect_equal(sum(w * x[1:5,1:5]), x2[3,3])
expect_equal(sum(w * x[1:5,5:9]), x2[3,7])
expect_equal(sum(w * x[8:12,1:5]), x2[10,3])
expect_equal(sum(w * x[8:12,5:9]), x2[10,7])
x2c <- filt2_conv(x, w)
expect_equal(x2, x2c)
x3 <- filt2_bi(x, width=5)
x4 <- filt2_adapt(x, width=5)
x5 <- filt2_diff(x, niter=5)
x6 <- filt2_guide(x, width=5)
expect_lt(sum((x3 - y)^2), sum((x - y)^2))
expect_lt(sum((x4 - y)^2), sum((x - y)^2))
expect_lt(sum((x5 - y)^2), sum((x - y)^2))
expect_lt(sum((x6 - y)^2), sum((x - y)^2))
z <- array(rep.int(x, 3), dim=c(dim(x), 3))
z1 <- filt2_ma(z, width=5)
z2 <- filt2_gauss(z, width=5)
z3 <- filt2_bi(z, width=5)
z4 <- filt2_adapt(z, width=5)
z5 <- filt2_diff(z, niter=5)
z6 <- filt2_guide(z, width=5)
z7 <- filt2_guide(z, width=5, guide=x)
expect_equal(z1[,,1], x1)
expect_equal(z2[,,1], x2)
expect_equal(z3[,,1], x3)
expect_equal(z4[,,1], x4)
expect_equal(z5[,,1], x5)
expect_equal(z6[,,1], x6)
expect_equal(z7[,,1], x6)
expect_equal(z1[,,2], x1)
expect_equal(z2[,,2], x2)
expect_equal(z3[,,2], x3)
expect_equal(z4[,,2], x4)
expect_equal(z5[,,2], x5)
expect_equal(z6[,,2], x6)
expect_equal(z7[,,2], x6)
expect_equal(z1[,,3], x1)
expect_equal(z2[,,3], x2)
expect_equal(z3[,,3], x3)
expect_equal(z4[,,3], x4)
expect_equal(z5[,,3], x5)
expect_equal(z6[,,3], x6)
expect_equal(z7[,,3], x6)
set.seed(1, kind="default")
u <- diag(10)
i <- upper.tri(u, TRUE)
u[i] <- u[i] + 10
v <- u + rnorm(length(u))
v1 <- filt2_bi(v, width=5)
v2 <- filt2_adapt(v, width=5)
v3 <- filt2_guide(v, width=5, sdreg=1)
expect_lt(median(abs(v1 - u)), median(abs(v - u)))
expect_lt(median(abs(v2 - u)), median(abs(v - u)))
expect_lt(median(abs(v3 - u)), median(abs(v - u)))
})
test_that("filter nd (2d)", {
set.seed(1, kind="default")
i <- seq(-4, 4, length.out=12)
j <- seq(1, 3, length.out=9)
co <- expand.grid(i=i, j=j)
y <- matrix(atan(co$i / co$j), nrow=12, ncol=9)
y <- 10 * (y - min(y)) / diff(range(y))
x <- y + 2.5 * runif(length(y))
x1a <- filtn_ma(x, k=9)
x1b <- filt2_ma(x, width=3)
expect_equal(x1a[3,3], x1b[3,3])
expect_equal(x1a[3,7], x1b[3,7])
expect_equal(x1a[10,3], x1b[10,3])
expect_equal(x1a[10,7], x1b[10,7])
x2a <- filtn_gauss(x, k=9, sd=1)
x2b <- filt2_gauss(x, width=3, sd=1)
expect_equal(x2a[3,3], x2b[3,3])
expect_equal(x2a[3,7], x2b[3,7])
expect_equal(x2a[10,3], x2b[10,3])
expect_equal(x2a[10,7], x2b[10,7])
x3a <- filtn_bi(x, k=9, sddist=1, sdrange=1)
x3b <- filt2_bi(x, width=3, sddist=1, sdrange=1)
expect_equal(x3a[3,3], x3b[3,3])
expect_equal(x3a[3,7], x3b[3,7])
expect_equal(x3a[10,3], x3b[10,3])
expect_equal(x3a[10,7], x3b[10,7])
x4a <- filtn_adapt(x, k=9, spar=1)
x4b <- filt2_adapt(x, width=3, spar=1)
expect_equal(x4a[3,3], x4b[3,3])
expect_equal(x4a[3,7], x4b[3,7])
expect_equal(x4a[10,3], x4b[10,3])
expect_equal(x4a[10,7], x4b[10,7])
})
test_that("warp + align 2d", {
set.seed(1, kind="default")
x <- matrix(0, nrow=32, ncol=32)
x[9:24,9:24] <- 10
x <- x + runif(length(x))
y <- trans2d(x, rotate=15, translate=c(-5, 5))
x1 <- warp2_trans(y, x, metric="cor")
x2 <- warp2_trans(y, x, metric="mse")
x3 <- warp2_trans(y, x, metric="mi")
expect_gt(mi(x1, x), mi(y, x))
expect_gt(mi(x2, x), mi(y, x))
expect_gt(mi(x3, x), mi(y, x))
u <- array(x, dim=c(dim(x), 3)) + rnorm(3 * length(x))
v <- trans2d(u, rotate=15, translate=c(-5, 5))
u2 <- warp2_trans(v, u, metric="cor")
expect_gt(mi(u2, u), mi(v, u))
})
test_that("contrast enhancement", {
set.seed(1, kind="default")
x <- matrix(0, nrow=32, ncol=32)
x[9:24,9:24] <- 10
y <- x + rlnorm(length(x))
z <- array(rep.int(y, 3), dim=c(dim(y), 3))
x1 <- enhance_adj(y)
x2 <- enhance_hist(y)
x3 <- enhance_adapt(y)
expect_equal(median(x1), median(y))
expect_equal(median(x2), median(y))
expect_equal(median(x3), median(y))
expect_equal(IQR(x1), IQR(y))
expect_equal(IQR(x2), IQR(y))
expect_equal(IQR(x3), IQR(y))
z1 <- enhance_adj(z)
z2 <- enhance_hist(z)
z3 <- enhance_adapt(z)
expect_equal(z1[,,1], x1)
expect_equal(z2[,,1], x2)
expect_equal(z3[,,1], x3)
h <- tabulate(cut(y, breaks=256L))
h2 <- tabulate(cut(x2, breaks=256L))
h3 <- tabulate(cut(x3, breaks=256L))
expect_gt(mean(which(h2 > 0)), mean(which(h > 0)))
expect_gt(mean(which(h3 > 0)), mean(which(h > 0)))
expect_lt(max(x2), max(y))
expect_lt(max(x3), max(y))
})
test_that("knnmax", {
y <- c(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0,
0, 0, 0, 2, 0, 0, 1, 4, 2, 0, 1, 1, 0, 0, 0,
0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 0,
0, 0, 0, 0, 1, 3, 3, 0, 0, 1, 4, 4, 3, 1, 0,
0, 0, 0, 0, 0, 3, 2, 0, 1, 0, 3, 2, 3, 0, 0,
0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 2, 3, 0, 0)
x <- matrix(y, nrow=7, ncol=15, byrow=TRUE)
rownames(x) <- seq_len(nrow(x))
colnames(x) <- seq_len(ncol(x))
co <- expand.grid(t1=1:nrow(x), t2=1:ncol(x))
m1 <- which(knnmax(x, co, k=5), arr.ind=TRUE)
expect_equal(nrow(m1), 6)
expect_equal(m1[,"row"], c(3, 5, 3, 6, 5, 2))
expect_equal(m1[,"col"], c(4, 6, 8, 9, 11, 14))
m2 <- which(knnmax(x, co, k=25), arr.ind=TRUE)
expect_equal(nrow(m2), 2)
expect_equal(m2[,"row"], c(3, 5))
expect_equal(m2[,"col"], c(8, 11))
})
test_that("findpeaks (knn)", {
y <- c(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0,
0, 0, 0, 2, 0, 0, 1, 4, 2, 0, 1, 1, 0, 0, 0,
0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 0,
0, 0, 0, 0, 1, 3, 3, 0, 0, 1, 4, 4, 3, 1, 0,
0, 0, 0, 0, 0, 3, 2, 0, 1, 0, 3, 2, 3, 0, 0,
0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 2, 3, 0, 0)
x <- matrix(y, nrow=7, ncol=15, byrow=TRUE)
p1 <- findpeaks_knn(x, k=5)
expect_equal(nrow(p1), 6)
expect_equal(p1[,"row"], c(3, 5, 3, 6, 5, 2))
expect_equal(p1[,"col"], c(4, 6, 8, 9, 11, 14))
expect_equal(attr(p1, "relheight"), x[p1] / max(x))
ind <- matrix(seq_along(x), nrow=nrow(x), ncol=ncol(x))
co <- expand.grid(t1=1:nrow(x), t2=1:ncol(x))
p2 <- findpeaks_knn(as.vector(x), co, k=5)
expect_equal(p2[1L], ind[3, 4])
expect_equal(p2[2L], ind[5, 6])
expect_equal(p2[3L], ind[3, 8])
expect_equal(p2[4L], ind[6, 9])
expect_equal(p2[5L], ind[5, 11])
expect_equal(p2[6L], ind[2, 14])
})
test_that("rasterization", {
set.seed(1, kind="default")
i <- seq(-4, 4, length.out=12)
j <- seq(1, 3, length.out=9)
co <- expand.grid(x=i, y=j)
z <- matrix(atan(co$x / co$y), nrow=12, ncol=9)
z <- 10 * (z - min(z)) / diff(range(z))
d1 <- expand.grid(x=1:12, y=1:9)
d1$vals <- as.vector(z)
expect_equal(c(x=12, y=9), estdim(d1[1:2]))
expect_equal(z, to_raster(d1$x, d1$y, d1$vals))
d2 <- d1
d2$x <- jitter(d2$x)
d2$y <- jitter(d2$y)
expect_equal(c(x=12, y=9), estdim(d2[1:2]))
expect_equal(z, to_raster(d2$x, d2$y, d2$vals))
set.seed(1, kind="default")
zn <- z
rm <- rbinom(length(z), 1, 0.2)
rm <- which(rm > 0)
zn[rm] <- NA
dn1 <- d1[-rm,,drop=FALSE]
dn2 <- d2[-rm,,drop=FALSE]
expect_equal(zn, to_raster(dn1$x, dn1$y, dn1$vals))
za <- array(c(z, z, z), dim=c(x=12, y=9, z=3))
d3 <- expand.grid(x=1:12, y=1:9, z=1:3)
d3$vals <- as.vector(za)
expect_equal(za, to_raster3(d3$x, d3$y, d3$z, d3$vals))
set.seed(1, kind="default")
nr <- 32
nc <- 32
x <- seq(-4, 4, length.out=nr)
y <- seq(1, 3, length.out=nc)
co <- expand.grid(x=x, y=y)
x <- co$x
y <- co$y
vals <- matrix(atan(x / y), nrow=nr, ncol=nc)
vals <- rescale_range(vals, c(0, 1))
vals <- rgb(vals, vals, vals)
expect_is(to_raster(x, y, vals), "matrix")
})
test_that("approx2", {
x <- matrix(1:25, nrow=5, ncol=5)
x1 <- approx2(x, xout=3, yout=3, tol=1, interp="none")
x2 <- approx2(x, xout=3, yout=3, tol=1, interp="mean")
x3 <- approx2(x, xout=3, yout=3, tol=1, interp="sum")
x4 <- approx2(x, xout=3, yout=3, tol=1, interp="max")
x5 <- approx2(x, xout=3, yout=3, tol=1, interp="min")
expect_equivalent(x[3,3], x1)
expect_equivalent(mean(x[2:4,2:4]), x2)
expect_equivalent(sum(x[2:4,2:4]), x3)
expect_equivalent(max(x[2:4,2:4]), x4)
expect_equivalent(min(x[2:4,2:4]), x5)
expect_equal(x, approx2(x, interp="none"))
expect_equal(x, approx2(x, tol=1, interp="linear"))
expect_equal(x, approx2(x, tol=2, interp="cubic"))
set.seed(1, kind="default")
y <- matrix(rnorm(25), nrow=5, ncol=5)
y1 <- approx2(y, xout=3, yout=3, tol=1, interp="none")
y2 <- approx2(y, xout=3, yout=3, tol=1, interp="mean")
y3 <- approx2(y, xout=3, yout=3, tol=1, interp="sum")
y4 <- approx2(y, xout=3, yout=3, tol=1, interp="max")
y5 <- approx2(y, xout=3, yout=3, tol=1, interp="min")
expect_equivalent(y[3,3], y1)
expect_equivalent(mean(y[2:4,2:4]), y2)
expect_equivalent(sum(y[2:4,2:4]), y3)
expect_equivalent(max(y[2:4,2:4]), y4)
expect_equivalent(min(y[2:4,2:4]), y5)
expect_equal(y, approx2(y, interp="none"))
expect_equal(y, approx2(y, tol=1, interp="linear"))
expect_equal(y, approx2(y, tol=2, interp="cubic"))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.