#' ks.get_benchmark_methods
#'
#' Get methods checked in benchmark.
#'
#' @param benchmark_csv Path to benchmark csv file.
#' @return Vector of feature selection methods checked.
#'
#' @export
ks.get_benchmark_methods = function(benchmark_csv = "benchmark1578929876.21765.csv"){
suppressMessages(library(limma))
suppressMessages(library(plyr))
suppressMessages(library(dplyr))
suppressMessages(library(edgeR))
suppressMessages(library(epiDisplay))
suppressMessages(library(rsq))
suppressMessages(library(MASS))
suppressMessages(library(Biocomb))
suppressMessages(library(caret))
suppressMessages(library(dplyr))
suppressMessages(library(epiDisplay))
suppressMessages(library(pROC))
suppressMessages(library(ggplot2))
suppressMessages(library(DMwR))
suppressMessages(library(ROSE))
suppressMessages(library(gridExtra))
suppressMessages(library(gplots))
suppressMessages(library(devtools))
suppressMessages(library(stringr))
suppressMessages(library(data.table))
suppressMessages(library(tidyverse))
benchmark = read.csv(benchmark_csv, stringsAsFactors = F)
rownames(benchmark) = make.names(benchmark$method, unique = T)
benchmark$method = rownames(benchmark)
temp = dplyr::select(benchmark, ends_with("_valid_Accuracy"))
metody = strsplit2(colnames(temp), "_")[,1]
return(metody)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.