#' ks.PCA
#'
#' Conduct PCA and create biplot.
#'
#' @param ttpm_pofiltrze Normalizaed counts in `ttpm` format.
#' @param meta Factor of cases labels that should be visualized on biplot.
#'
#' @return Biplot.
#'
#' @export
ks.PCA = function(ttpm_pofiltrze, meta) {
suppressMessages(library(plyr))
suppressMessages(library(dplyr))
suppressMessages(library(edgeR))
suppressMessages(library(epiDisplay))
suppressMessages(library(rsq))
suppressMessages(library(MASS))
suppressMessages(library(Biocomb))
suppressMessages(library(caret))
suppressMessages(library(dplyr))
suppressMessages(library(epiDisplay))
suppressMessages(library(pROC))
suppressMessages(library(ggplot2))
suppressMessages(library(DMwR))
suppressMessages(library(ROSE))
suppressMessages(library(gridExtra))
suppressMessages(library(gplots))
suppressMessages(library(devtools))
suppressMessages(library(stringr))
suppressMessages(library(data.table))
suppressMessages(library(tidyverse))
for(i in colnames(ttpm_pofiltrze)) {
if(!is.numeric(ttpm_pofiltrze[, i])) {
stop("Please provide a dataframe with only numeric variables")
}
}
if(is.data.frame(meta)) {
stop("Please provide a single categorical vector")
}
dane.pca <- prcomp(ttpm_pofiltrze, scale. = TRUE)
suppressMessages(library(ggbiplot))
ggbiplot(dane.pca,var.axes = FALSE,ellipse=TRUE,circle=TRUE, groups=as.factor(meta))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.