Kevin Blighe 2019-01-29
CorLevelPlot provides a quick and colourful way to visualise statistically significant correlations between any combination of categorical and continuous variables. Moreover, the statistical significancies of these correlations are also provided.
Install and load CorLevelPlot:
devtools::install_github("kevinblighe/CorLevelPlot")
library(CorLevelPlot)
The following code taken from Tutorial for the WGCNA package for R - 1. Simulation of expression and trait data
# simulate trait-to-eigengene data
no.obs <- 50
ESturquoise <- 0; ESbrown <- -0.6; ESgreen <- 0.6; ESyellow <- 0
ESvector <- c(ESturquoise, ESbrown, ESgreen, ESyellow)
nGenes1 <- 3000
simulateProportions1 <- c(0.2, 0.15, 0.08, 0.06, 0.04)
set.seed(1)
MEgreen <- rnorm(no.obs)
scaledy <- MEgreen * ESgreen + sqrt(1 - ESgreen ^ 2) * rnorm(no.obs)
y <- ifelse( scaledy > median(scaledy), 2, 1)
MEturquoise <- ESturquoise * scaledy + sqrt(1 - ESturquoise ^ 2) * rnorm(no.obs)
MEblue <- 0.6 * MEturquoise + sqrt(1 - 0.6 ^ 2) * rnorm(no.obs)
MEbrown <- ESbrown * scaledy + sqrt(1 - ESbrown ^ 2) * rnorm(no.obs)
MEyellow <- ESyellow * scaledy + sqrt(1 - ESyellow ^ 2) * rnorm(no.obs)
ModuleEigengeneNetwork1 <- data.frame(y, MEturquoise, MEblue, MEbrown, MEgreen, MEyellow)
CorLevelPlot(data = ModuleEigengeneNetwork1,
x = c("y", "MEturquoise", "MEblue", "MEbrown", "MEgreen", "MEyellow"),
y = c("y", "MEturquoise", "MEblue", "MEbrown", "MEgreen", "MEyellow"),
titleX = "X correlates",
cexTitleX = 3.0,
rotTitleX = 0,
colTitleX = "forestgreen",
fontTitleX = 2,
titleY = "Y\ncorrelates",
cexTitleY = 4.0,
rotTitleY = 100,
colTitleY = "gold",
fontTitleY = 4,
cexLabX = 1.0,
rotLabX = 45,
colLabX = "grey20",
fontLabX = 1,
cexLabY = 1.0,
rotLabY = 30,
colLabY = "royalblue",
fontLabY = 1,
posLab = "bottomleft",
col = c("blue4", "blue3", "blue2", "blue1", "white", "red1", "red2", "red3", "red4"),
posColKey = "right",
cexLabColKey = 1.2,
cexCorval = 1.0,
fontCorval = 4,
main = "WGCNA example",
scale = FALSE,
cexMain = 2,
rotMain = 360,
colMain = "red4",
fontMain = 4,
corFUN = "pearson",
corUSE = "pairwise.complete.obs",
signifSymbols = c("***", "**", "*", ""),
signifCutpoints = c(0, 0.001, 0.01, 0.05, 1),
colFrame = "white",
plotRsquared = FALSE)
library(datasets)
data(iris)
# order the categories in the 'Species' column
# CorLevelPlot will conver these to 1, 2, 3, ...
iris$Species <- as.numeric(factor(iris$Species, levels=c("setosa", "versicolor", "virginica")))
i <- CorLevelPlot(data = iris,
x = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width", "Species"),
y = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width", "Species"),
col = c("white", "cornsilk1", "yellow", "gold", "forestgreen", "darkgreen"),
cexCorval = 1.2,
fontCorval = 2,
posLab = "all",
rotLabX = 45,
scale = TRUE,
main = bquote(Iris~r^2~correlates),
plotRsquared = TRUE)
pca <- stats::prcomp(iris[,c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")])
df <- data.frame(pca$x, iris)
ii <- CorLevelPlot(data = df,
x = c("PC1", "PC2", "PC3", "PC4"),
y = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width", "Species"),
cexTitleX = 2.0,
rotTitleX = 0,
fontTitleX = 2,
titleY = "Iris components",
cexTitleY = 2.0,
rotTitleY = 90,
fontTitleY = 2,
posLab = "topright",
col = c("blue1", "skyblue", "white", "pink", "red1"),
posColKey = "bottom",
cexLabColKey = 1.5,
cexCorval = 1.5,
fontCorval = 2,
rotLabX = 45,
scale = TRUE,
main = "Iris PC correlates",
colFrame = "white",
plotRsquared = FALSE)
require(rasterVis)
require(gridExtra)
require(grid)
grid.arrange(
arrangeGrob(i,
top = textGrob("A",
x = unit(0.05,"npc"),
y = unit(0.9,"npc"),
just = c("left","top"),
gp = gpar(fontsize=32))),
arrangeGrob(ii,
top = textGrob("B",
x = unit(0.05,"npc"),
y = unit(0.9,"npc"),
just = c("left","top"),
gp = gpar(fontsize=32))),
ncol = 2)
library(DAAG)
data(monica)
# order the categorical variables
monica$outcome <- as.numeric(factor(monica$outcome, levels=c("dead", "live")))
monica$diabetes[monica$diabetes=="nk"] <- NA
monica$diabetes <- as.numeric(factor(monica$diabetes, levels=c("n", "y")))
monica$hichol[monica$hichol=="nk"] <- NA
monica$hichol <- as.numeric(factor(monica$hichol, levels=c("n", "y")))
monica$stroke[monica$stroke=="nk"] <- NA
monica$stroke <- as.numeric(factor(monica$stroke, levels=c("n", "y")))
monica$sex <- as.numeric(factor(monica$sex, levels=c("m", "f")))
monica$yronset <- as.numeric(factor(monica$yronset, levels=c("85","86","87","88","89","90","91","92","93")))
monica$highbp[monica$highbp=="nk"] <- NA
monica$highbp <- as.numeric(factor(monica$highbp, levels=c("n", "y")))
monica$angina[monica$angina=="nk"] <- NA
monica$angina <- as.numeric(factor(monica$angina, levels=c("n", "y")))
monica$hosp <- as.numeric(factor(monica$hosp, levels=c("n", "y")))
CorLevelPlot(data = monica,
x = c("outcome", "diabetes", "highbp", "hichol", "angina", "hosp"),
y = c("sex", "age", "yronset"),
col = c("darkblue", "blue2", "black", "red2", "darkred"),
cexCorval = 1.5,
colCorval = "white",
fontCorval = 2,
posLab = "bottomleft",
rotLabX = 45,
posColKey = "top",
cexLabColKey = 1.2,
scale = TRUE,
main = "World Health Organization",
colFrame = "white",
plotRsquared = FALSE)
sessionInfo()
## R version 3.5.2 (2018-12-20)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.5 LTS
##
## Matrix products: default
## BLAS: /usr/lib/atlas-base/atlas/libblas.so.3.0
## LAPACK: /usr/lib/atlas-base/atlas/liblapack.so.3.0
##
## locale:
## [1] LC_CTYPE=pt_BR.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB.UTF-8 LC_COLLATE=pt_BR.UTF-8
## [5] LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=pt_BR.UTF-8
## [7] LC_PAPER=en_GB.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] grid stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] DAAG_1.22 gridExtra_2.3 rasterVis_0.45
## [4] latticeExtra_0.6-28 RColorBrewer_1.1-2 lattice_0.20-38
## [7] raster_2.8-4 sp_1.3-1 BiocInstaller_1.32.1
## [10] CorLevelPlot_0.99.0 knitr_1.21
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.0 compiler_3.5.2 highr_0.7
## [4] prettyunits_1.0.2 remotes_2.0.2 tools_3.5.2
## [7] digest_0.6.18 pkgbuild_1.0.2 pkgload_1.0.2
## [10] gtable_0.2.0 viridisLite_0.3.0 evaluate_0.12
## [13] memoise_1.1.0 rlang_0.3.1 cli_1.0.1
## [16] parallel_3.5.2 curl_3.3 yaml_2.2.0
## [19] hexbin_1.27.2 xfun_0.4 withr_2.1.2
## [22] stringr_1.3.1 desc_1.2.0 fs_1.2.6
## [25] devtools_2.0.1 rprojroot_1.3-2 glue_1.3.0
## [28] R6_2.3.0 processx_3.2.1 rmarkdown_1.11
## [31] sessioninfo_1.1.1 callr_3.1.1 magrittr_1.5
## [34] codetools_0.2-16 backports_1.1.3 ps_1.3.0
## [37] htmltools_0.3.6 usethis_1.4.0 assertthat_0.2.0
## [40] stringi_1.2.4 crayon_1.3.4 zoo_1.8-4
(Blighe 2018)
Blighe, Kevin. 2018. “CorLevelPlot: Visualise correlation results and test significancies of these.” https://github.com/kevinblighe.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.