#' @title mcpAUCboot
#' @description Calculates the confidence interval using a boot analysis
#' @param dataset dataframe or RangedSummarizedExperiment objetc
#' @param r number of iterations.
#' @param type.interval String that represent the type of intervals required.
#' The value should be any subset of the values
#' c("norm","basic", "stud", "perc", "bca")
#' or simply "all" which will compute all five types of intervals.
#' @param low.value lower false positive rate value that the function
#' will use to calculate the pAUC
#' @param up.value upper false positive rate value that the function
#' will use to calculate the pAUC
#' @param selection vector that will only be used if the parameter
#' "dataset" is a RangedSummarizedExperiment object.
#' This parameter is used to select the variables that will be analysed
#' @param variable in case that dataset is a SummarizedExperiment,
#' indicate the Gold Standard
#' @param level confidence level
#' @return SummarizedExperiment object with the mcpAUC, the standard
#' desviation, and the lower and upper limits of the confidence interval.
#' @export mcpAUCboot
#' @import boot
#' @examples
#'library(fission)
#'data("fission")
#'resultsMCboot <- mcpAUCboot(fission,low.value = 0, up.value = 0.25,
#' selection = c("SPNCRNA.1080","SPAC186.08c"), variable="strain")
mcpAUCboot <- function(dataset, low.value = NULL, up.value = NULL,
r=50, level = 0.95, type.interval="perc", selection = NULL, variable=NULL) {
ci_mcpAUC <- NULL; sd <- NULL; par <- NULL; legend <- NULL; abline <- NULL;
stopifnot(is.data.frame(dataset) || is(dataset, "SummarizedExperiment"),
is.numeric(low.value), low.value>=0 && low.value <=1,
is.numeric(up.value), up.value>=0 && up.value <=1,
is.numeric(level), level<=1 && level>=0,
is.numeric(r), type.interval == "norm" || type.interval == "perc" || type.interval == "basic" ||
type.interval == "stud" || type.interval == "bca")
if (is(dataset, "SummarizedExperiment")) {
stopifnot(is.character(selection), is.character(variable))
strain <- dataset@colData@listData
strain <- strain[variable][[1]]
dataset <- as.data.frame(SummarizedExperiment::assay(dataset))
dataset <- scale(t(as.matrix(dataset[selection,])), center=TRUE, scale = TRUE)
name.variable <- colnames(dataset)
dataset <- as.data.frame(cbind(strain,dataset))
} else { dataset <- as.data.frame(dataset) }
if(dim(dataset)[2]<2) {stop("database has to have at least 2 colums")}
if (!is.null(up.value)){
up.limit <- up.value
}else{
up.limit <- 1
}
if (!is.null(low.value)){
low.limit <- low.value
}else{
low.limit <- 0
}
value <- mcpAUC(dataset, low.value=low.value, up.value = up.value)
McpNA <-assay(value)$St_pAUC
result_boot <- boot::boot(dataset, statistic = fbootM, R=r, low.limit = low.limit, up.limit =up.limit)
intervalo_confianza <- matrix(0,nrow=dim(result_boot$t)[2],ncol=4)
for (i in seq_along(dim(result_boot$t)[2])) {
if (is.na(McpNA[i])){intervalo_confianza[i,] =rep(NA,4)} else {
ci_mcpAUC <- boot::boot.ci(result_boot, type <- type.interval, conf = level, index = i )
p_max=length(ci_mcpAUC[[4]])
intervalo_confianza[i,]=c(result_boot$t0[i],ci_mcpAUC[[4]][c(p_max-1,p_max)],sd(result_boot$t[,i]))
}
}
colnames(intervalo_confianza)=c("MCp_AUC","lwr","upr","sd")
names <- c("MCp_AUC","lwr","upr","sd")
obj <- list(intervalo_confianza[,1],intervalo_confianza[,2],intervalo_confianza[,3],intervalo_confianza[,4])
x <- createSE(obj, names)
return(x)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.