Description Usage Arguments Value Examples
View source: R/empirical.controls.R
This function uses the iteratively reweighted surrogate variable analysis approach to estimate the probability that each gene is an empirical control.
1 2 3 4 5 6 7 8 | empirical.controls(
dat,
mod,
mod0 = NULL,
n.sv,
B = 5,
type = c("norm", "counts")
)
|
dat |
The transformed data matrix with the variables in rows and samples in columns |
mod |
The model matrix being used to fit the data |
mod0 |
The null model being compared when fitting the data |
n.sv |
The number of surogate variables to estimate |
B |
The number of iterations of the irwsva algorithm to perform |
type |
If type is norm then standard irwsva is applied, if type is counts, then the moderated log transform is applied first |
pcontrol A vector of probabilites that each gene is a control.
1 2 3 4 5 6 7 8 9 10 | library(bladderbatch)
data(bladderdata)
dat <- bladderEset[1:5000,]
pheno = pData(dat)
edata = exprs(dat)
mod = model.matrix(~as.factor(cancer), data=pheno)
n.sv = num.sv(edata,mod,method="leek")
pcontrol <- empirical.controls(edata,mod,mod0=NULL,n.sv=n.sv,type="norm")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.