#' A function to generate a Vplot
#'
#' See individual methods for further detail
#'
#' @param x GRanges or list or Vmat
#' @param ... additional parameters
#' @return A Vmat ggplot
#'
#' @export
#'
#' @examples
#' data(bam_test)
#' data(ce11_proms)
#' V <- plotVmat(
#' bam_test,
#' ce11_proms,
#' normFun = 'libdepth+nloci'
#' )
plotVmat <- function(x, ...) {
UseMethod("plotVmat")
}
#' A function to plot a computed Vmat
#'
#' The default plotVmat method generates a ggplot representing a
#' heatmap of fragment density.
#'
#' @param x A computed Vmat (ideally, should be normalized)
#' @param hm Integer, should be between 0 and 100.
#' Used to automatically
#' scale the range of colors (best to
#' keep between 90 and 100)
#' @param colors a vector of colors
#' @param breaks a vector of breaks.
#' length(breaks) == length(colors) + 1
#' @param xlim vector of two integers, x limits
#' @param ylim vector of two integers, y limits
#' @param main character, title of the plot
#' @param xlab character, x-axis label
#' @param ylab character, y-axis label
#' @param key character, legend label
#' @param ... additional parameters
#' @return A Vmat ggplot
#'
#' @import ggplot2
#' @import RColorBrewer
#' @import reshape2
#' @export
#'
#' @examples
#' data(bam_test)
#' data(ce11_proms)
#' V <- plotVmat(
#' bam_test,
#' ce11_proms,
#' normFun = 'libdepth+nloci',
#' return_Vmat = TRUE
#' )
#' plotVmat(V)
plotVmat.default <- function(
x,
hm = 90,
colors = COLORSCALE_VMAT,
breaks = NULL,
xlim = c(-250, 250),
ylim = c(50, 300),
main = '',
xlab = 'Distance from center of elements',
ylab = 'Fragment length',
key = 'Score',
...
)
{
# Define breaks and clamp matrix within breaks
if (is(x, 'Vmat')) {
if (is.null(breaks)) {
probs <- quantile(c(x), probs = seq(0, 1, length.out = 101))
breaks <- seq(
probs[(100-hm)/2],
probs[hm+(100-hm)/2],
length.out = length(colors)+1
)
if (length(unique(breaks)) == 1) {
breaks <- seq(
min(x), max(x), length.out = length(colors)+1
)
}
}
x[x < min(breaks)] <- min(breaks)
x[x > max(breaks)] <- max(breaks)
}
else if (is(x, 'VmatList')) {
if (is.null(breaks)) {
probs <- quantile(
c(do.call(rbind, x)), probs = seq(0, 1, length.out = 101)
)
breaks <- seq(
probs[(100-hm)/2], probs[hm+(100-hm)/2],
length.out = length(colors)+1
)
if (length(unique(breaks)) == 1) {
breaks <- seq(
do.call(min, x),
do.call(max, x),
length.out = length(colors)+1
)
}
}
x <- lapply(x, function(V) {
V[V < min(breaks)] <- min(breaks)
V[V > max(breaks)] <- max(breaks)
return(V)
})
class(x) <- c('VmatList', class(x))
}
# Plot
df <- reshape2::melt(x)
if (is(x, 'VmatList')) {
colnames(df) <- c('Var1', 'Var2', 'value', 'Cond.')
df$Cond. <- factor(df$Cond., levels = names(x))
}
else {
colnames(df) <- c('Var1', 'Var2', 'value')
}
p <- ggplot2::ggplot(df, ggplot2::aes(Var1, Var2, fill = value))
p <- p + ggplot2::geom_raster()
p <- p + ggplot2::scale_fill_gradientn(
breaks = c(min(breaks), max(breaks)),
colors = colors
)
p <- p + theme_ggplot2()
p <- p + ggplot2::theme(
plot.background = ggplot2::element_blank(),
legend.background = ggplot2::element_blank(),
panel.border = ggplot2::element_rect(
colour = "black", fill = NA, size = 0.5
)
)
p <- p + ggplot2::scale_x_continuous(expand = c(0, 0))
p <- p + ggplot2::scale_y_continuous(expand = c(0, 0))
p <- p + ggplot2::labs(
title = main,
x = xlab,
y = ylab,
fill = key
)
p <- p + ggplot2::coord_fixed()
return(p)
}
#' A function to plot a computed Vmat
#'
#' The plotVmat.Vmat() method forwards the Vmat to plotVmat.default().
#'
#' @param x A computed Vmat (ideally, should be normalized)
#' @param ... additional parameters
#' @return A Vmat ggplot
#'
#' @export
#'
#' @examples
#' data(bam_test)
#' data(ce11_proms)
#' V <- plotVmat(
#' bam_test,
#' ce11_proms,
#' normFun = 'libdepth+nloci',
#' return_Vmat = TRUE
#' )
#' plotVmat(V)
plotVmat.Vmat <- function(x, ...) {
plotVmat.default(x, ...)
}
#' A function to plot a computed VmatList
#'
#' The plotVmat.VmatList() method forwards the Vmat to plotVmat.default().
#'
#' @param x A VmatList (output of plotVmat.list())
#' @param nrow Integer, how many rows in facet?
#' @param ncol Integer, how many cols in facet?
#' @param dir str, direction of facets?
#' @param ... additional parameters
#' @return A Vmat ggplot
#'
#' @export
#'
#' @examples
#' data(bam_test)
#' data(ce11_proms)
#' list_params <- list(
#' 'germline' = list(
#' bam_test,
#' ce11_proms[ce11_proms$which.tissues == 'Germline']
#' ),
#' 'muscle' = list(
#' bam_test,
#' ce11_proms[ce11_proms$which.tissues == 'Muscle']
#' )
#' )
#' V <- plotVmat(
#' list_params,
#' normFun = 'libdepth+nloci',
#' roll = 5
#' )
plotVmat.VmatList <- function(x, nrow = NULL, ncol = NULL, dir = 'v', ...) {
p <- plotVmat.default(x, ...)
if (is.null(nrow) | is.null(ncol)) {
nrow <- 1
ncol <- length(x)
}
p <- p +
facet_wrap(~Cond., nrow = nrow, ncol = ncol, dir = dir) +
theme(legend.position = 'bottom') +
theme(panel.spacing = unit(1, "lines"))
}
#' A function to compute (and plot) a Vmat
#'
#' The plotVmat.GRanges() method computes and normalizes a Vmat
#' before passing it to plotVmat.Vmat() method.
#'
#' @param x GRanges, paired-end fragments
#' @param granges GRanges, loci to map the fragments onto
#' @param xlims x limits of the computed Vmat
#' @param ylims y limits of the computed Vmat
#' @param normFun character. A Vmat should be scaled either by:
#' \itemize{
#' \item 'libdepth+nloci', e.g. the library depth and the number of
#' loci used to compute the Vmat;
#' \item zscore, if relative patterns of fragment density
#' are more important than density per se;
#' \item Alternatively, the Vmat can be scaled to % ('pct'), to
#' a chosen quantile ('quantile') or to the max Vmat value ('max').
#' }
#' @param s A float indicating which quantile to use if 'quantile'
#' normalization is chosen
#' @param roll integer, to use as the window to smooth the Vmat rows
#' by rolling mean.
#' @param cores Integer, number of threads to parallelize
#' fragments subsetting
#' @param return_Vmat Boolean, should the function return the computed
#' Vmat rather than the plot?
#' @param verbose Boolean
#' @param ... additional parameters
#' @return A Vmat ggplot
#'
#' @export
#'
#' @examples
#' data(bam_test)
#' data(ce11_proms)
#' V <- plotVmat(
#' bam_test,
#' ce11_proms,
#' normFun = 'libdepth+nloci',
#' roll = 5
#' )
plotVmat.GRanges <- function(
x,
granges,
xlims = c(-250, 250),
ylims = c(50, 300),
normFun = '',
s = 0.95,
roll = 3,
cores = 1,
return_Vmat = FALSE,
verbose = 1,
...
)
{
# Calculate Vmat
if (verbose) message('Computing V-mat')
Vmat <- computeVmat(
x, granges, cores = cores, xlims = xlims, ylims = ylims
)
# Normalize Vmat
if (verbose) message('Normalizing the matrix')
Vmat <- normalizeVmat(
Vmat, x, granges,
normFun = normFun, s = s, roll = roll, verbose = verbose
)
# Replace NA / inf values by 0
if (any(is.infinite(Vmat) | is.na(Vmat)))
Vmat[is.infinite(Vmat) | is.na(Vmat)] <- 0
class(Vmat) <- c("Vmat", class(Vmat))
#
if (return_Vmat == TRUE) {
return(Vmat)
} else {
key <- switch(
normFun,
'libdepth+nloci' = "Lib. depth & number of loci",
'zscore' = "Z-score",
'pct' = "% of total fragment #",
'quantile' = paste0("% of quantile ", s),
'none' = 'raw',
'skip' = 'raw'
)
if (is.null(key)) key <- 'raw'
key <- sprintf("Frag. density\n(%s)", key)
p <- plotVmat(Vmat, key = key, ...)
return(p)
}
}
#' A function to compute (and plot) several Vmats.
#'
#' The plotVmat.GRanges() method computes and normalizes multiple Vmats
#' before passing them to plotVmat.VmatList() method.
#'
#' @param x list Each element of the list should be a list containing
#' paired-end fragments and GRanges of interest.
#' @param cores Integer, number of cores to parallelize the plots
#' @param cores_subsetting Integer, number of threads to parallelize
#' fragments subsetting
#' @param nrow Integer, how many rows in facet?
#' @param ncol Integer, how many cols in facet?
#' @param xlims x limits of the computed Vmat
#' @param ylims y limits of the computed Vmat
#' @param normFun character. A Vmat should be scaled either by:
#' \itemize{
#' \item 'libdepth+nloci', e.g. the library depth and the number of
#' loci used to compute the Vmat;
#' \item zscore, if relative patterns of fragment density
#' are more important than density per se;
#' \item Alternatively, the Vmat can be scaled to % ('pct'), to
#' a chosen quantile ('quantile') or to the max Vmat value ('max').
#' }
#' @param s A float indicating which quantile to use if 'quantile'
#' normalization is chosen
#' @param roll integer, to use as the window to smooth the Vmat rows
#' by rolling mean.
#' @param return_Vmat Boolean, should the function return the computed
#' Vmat rather than the plot?
#' @param verbose Boolean
#' @param ... additional parameters
#' @return A list of Vmat ggplots
#'
#' @import parallel
#' @export
#'
#' @examples
#' data(bam_test)
#' data(ce11_proms)
#' list_params <- list(
#' 'germline' = list(
#' bam_test,
#' ce11_proms[ce11_proms$which.tissues == 'Germline']
#' ),
#' 'muscle' = list(
#' bam_test,
#' ce11_proms[ce11_proms$which.tissues == 'Muscle']
#' )
#' )
#' V <- plotVmat(
#' list_params,
#' normFun = 'libdepth+nloci',
#' roll = 5
#' )
plotVmat.list <- function(
x,
cores = 1,
cores_subsetting = 1,
nrow = NULL,
ncol = NULL,
xlims = c(-250, 250),
ylims = c(50, 300),
normFun = 'libdepth+nloci',
s = 0.95,
roll = 3,
return_Vmat = FALSE,
verbose = 1,
...
)
{
# Calculate all the Vmats
if (is.null(names(x)))
stop('Please provide a *named* list of parameters. Aborting.')
Vmats_list <- parallel::mclapply(seq_along(x), function(K) {
if (verbose) message('- Processing sample ', K, '/', length(x))
bam_granges <- x[[K]][[1]]
granges <- x[[K]][[2]]
Vmat <- plotVmat(
bam_granges,
granges,
xlims = xlims,
ylims = ylims,
normFun = normFun,
s = s,
roll = roll,
cores = cores_subsetting,
return_Vmat = TRUE,
verbose = verbose - 1
)
# Replace NA / inf values by 0
Vmat[is.infinite(Vmat) | is.na(Vmat)] <- 0
return(Vmat)
}, mc.cores = cores)
names(Vmats_list) <- names(x)
class(Vmats_list) <- "VmatList"
# Plot
if (return_Vmat == TRUE) {
return(Vmats_list)
}
else {
key <- switch(
normFun,
'libdepth+nloci' = "Lib. depth & number of loci",
'zscore' = "Z-score",
'pct' = "% of total fragment #",
'quantile' = paste0("% of quantile ", s),
'none' = 'raw',
'skip' = 'raw'
)
if (is.null(key)) key <- 'raw'
key <- sprintf("Frag. density\n(%s)", key)
plotVmat(Vmats_list, key = key, nrow, ncol, ...)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.