setMethod("initialize", "HiC_matrix_wInsulation", function(.Object, base_HiC_matrix) {
if(missing(base_HiC_matrix)){
# warning("please supply base_HiC_matrix to generate functional HiC_matrix_wInsulation")
return(.Object)
}
to_copy = names(getSlots("HiC_matrix"))
for(s in to_copy){
slot(.Object, s) = slot(base_HiC_matrix, s)
}
.Object@hic_1d = .Object@hic_1d[, .(index, seqnames, start, end)]
# .Object@hic_2d = .Object@hic_2d[i != j]
###score insulation across each chromosome
full_dt = score_insulation(.Object, .Object@parameters@n_insulation_bins)
###conditionally apply log2 / mean normalization
if(.Object@parameters@log2_over_mean_normalization){
print("applying log2 mean normalization...")
#floor value at lowest measured
#add pseudocount
full_dt = apply_log2mean_norm(full_dt)
# meanv = full_dt[value > 0, mean(value, na.rm = T)]
# pseudo = meanv / 2^10
# full_dt[value < pseudo, value := pseudo]
# full_dt[, value := log2(value / meanv)]
}
.Object@hic_1d = score_delta(hic_1d = full_dt, n_delta_bins = .Object@parameters@n_delta_bins)
validObject(.Object)
.Object
})
score_insulation = function(hic_mat, n_insulation_bins){
all_chrms = unique(hic_mat@hic_1d$seqnames)
names(all_chrms) = all_chrms
n_bins = n_insulation_bins
print(paste("scoring insulation for ", length(all_chrms), "chromosomes..."))
if(exists("scores_dt"))remove(scores_dt, pos = ".GlobalEnv")
hidden = pbapply::pblapply(all_chrms, function(chr){
s = hic_mat@hic_1d[seqnames == chr][1, start]
e = hic_mat@hic_1d[seqnames == chr][.N, end]
ins = insulation_of_chrRange(hic_mat, chr = chr, start = s, end = e)
ins = ins[!is.na(names(ins))]
dt = data.table(value = ins, index = as.integer(names(ins)))
if(!exists("scores_dt")){
scores_dt <<- dt
}else{
scores_dt <<- rbind(scores_dt, dt)
}
})
setkey(scores_dt, cols = "index")
full_dt = merge(hic_mat@hic_1d, scores_dt, by = "index", all.x = T)
return(full_dt)
}
score_delta = function(hic_1d, n_delta_bins){
new_1d = hic_1d
new_1d$delta = 0
new_1d$minmax = 0
hidden = pbsapply(unique(new_1d$seqnames), function(chr){
# print(chr)
fmm_res = find_maxima_minima(vals = new_1d[seqnames == chr]$value, n_delta_bins = n_delta_bins)
# print(paste("d-", class(fmm_res$d)))
new_1d[seqnames == chr]$delta <<- as.numeric(fmm_res$d)
minmax = rep(NA, length(fmm_res$vals))
minmax[fmm_res$maxima_i] = 1
minmax[fmm_res$minima_i] = -1
# print(paste("mm-", class(minmax)))
new_1d[seqnames == chr]$minmax <<- as.numeric(minmax)
})
return(new_1d)
}
apply_log2mean_norm = function(full_dt){
meanv = full_dt[value > 0, mean(value, na.rm = T)]
pseudo = meanv / 2^10
full_dt[value < pseudo, value := pseudo]
full_dt[, value := log2(value / meanv)]
return(full_dt)
}
#takes an object of class HiC_matrix and returns HiC_matrix_wInsulation
#if input is already HiC_matrix_wInsulation, will overwrite
recalculate_insulation = function(hic_matrix, insulation_distance = 5*10^5, delta_distance = 1*10^5){
hic_matrix@parameters@n_insulation_bins =
as.integer(ceiling(insulation_distance / hic_matrix@parameters@bin_size))
hic_matrix@parameters@n_delta_bins =
as.integer(ceiling(delta_distance / hic_matrix@parameters@bin_size))
HiC_matrix_wInsulation(hic_matrix)
}
#' HiC_matrix_wInsulation constructor
#'
#' @param hic_matrix a loaded HiC_matrix
#'
#' @return
#' @export
#'
#' @examples
HiC_matrix_wInsulation = function(hic_matrix){
new("HiC_matrix_wInsulation",
base_HiC_matrix = hic_matrix)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.