#' Returns the final label assignments for a parameter using a support vector
#' machine
#'
#' @param x A \code{SingleCellExperiment} created with \code{\link{readCytof}}
#' with the scores and initial columns filled out for the event type of
#' interest.
#' @param type Identifies the type of label that is being modeled. Must
#' be 'bead', 'doublet', 'debris', or 'dead'.
#' @param loss Specifies the type of loss used to tune the GBM. Can be either
#' "auc" for the area under the curve or "class" for classification error.
#' @param n number of observations in training dataset.
#' @param standardize Indicates if the data should be standardized. Because
#' the data are on different scales, it should be standardized for
#' this analysis because the variables are on different scales.
#'
#' @return An updated \code{SingleCellExperiment} is returned with the labels
#' for the parameter of interest (bead, doublet, debris, or dead) added to
#' the \code{label} object of the \code{SingleCellExperiment} and the
#' probabilities for the event type added to the \code{probs} object of the
#' \code{SingleCellExperiment}.
#'
#' @details
#' \code{svmLabel} uses a support vector machine to compute the final labels
#' for the specified parameter type (bead, doublet, debris, or dead). This step
#' cannot be completed until the corresponding initialization function
#' (\code{initialBead}, \code{initialDebris}, \code{initialDoublet}, or
#' \code{initialDead}) is done on the \code{SingleCellExperiment} created by
#' \code{readCytof}.
#' The support vector machine is tuned using \code{\link[EZtune]{eztune}} and
#' then predicted values are computed for all of the events in \code{x}. If
#' the predicted probability for the label type is greater than 0.5, the label
#' is changed to the specified type. However, if an observation already has a
#' label other than 'cell' in the \code{label} variable, it will not be
#' changed. The predicted probabilities for all of the observations are
#' stored in the variable associated with that type in the \code{probs}
#' object of \code{x} for further analysis. Thus, it is possible to have
#' a probability greater than 0.5 for 'debris' but still have a label of
#' 'bead' if an observation was classified as a bead prior to classifying
#' the debris.
#'
#' @examples
#' data("raw_data", package = "CATALYST")
#' sce <- readCytof(raw_data, beads = "Beads", viability = c("cisPt1", "cisPt2"))
#' sce <- initialBead(sce)
#' sce <- svmLabel(sce, type = "bead", loss = "auc")
#' table(label(sce))
#'
#' @export
svmLabel <- function(x, type = c("bead", "doublet", "debris", "dead"),
loss = c("auc", "class"), n = 4000, standardize = TRUE) {
if (!methods::is(x, "SingleCellExperiment")) {
stop("x must be an object created with readCytof")
}
type <- match.arg(tolower(type), choices = c("bead", "debris",
"doublet", "dead"))
loss <- match.arg(tolower(loss), c("auc", "class"))
if (standardize) {
xs <- scale(x$tech)
} else {
xs <- x$tech
}
loss <- tolower(loss)
if (loss != "auc" & loss != "class") {
warning("Invalid loss specified. AUC used to tune model.")
loss <- "auc"
}
index <- modelData(x, type = type)
if (sum(x$initial[index, grep(type, colnames(x$initial))] == -1) < 100 |
sum(x$initial[index, grep(type, colnames(x$initial))] == 1) < 100) {
warning("Not enough ", type, " or non-", type, "to build model.")
pred <- rep(0, nrow(xs))
} else {
svmTune <- EZtune::eztune(x = xs[index, ],
y = factor(x$initial[index,
grep(type,
colnames(x$initial))]),
method = "svm",
fast = 0.5,
loss = loss)
svmfit <- e1071::svm(x = xs[index, ],
y = factor(x$initial[index,
grep(type,
colnames(x$initial))]),
cost = svmTune$cost,
gamma = svmTune$gamma,
kernel = "radial",
probability = TRUE)
pred.pr <- stats::predict(svmfit, xs, probability = TRUE)
pred <- attr(pred.pr,
"probabilities")[,
colnames(attr(pred.pr,
"probabilities")) == "1"]
}
x$probs[, grep(type, colnames(x$initial))] <- pred
x$label[x$label == "cell"] <- ifelse(round(pred[x$label == "cell"]),
type, "cell")
x
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.