R/gbmLabel.R

Defines functions gbmLabel

Documented in gbmLabel

#' Returns the final label assignments for a parameter using a gradient
#' boosting machine
#'
#' @param x A \code{SingleCellExperiment} created with \code{\link{readCytof}} 
#' with the scores and initial columns filled out for the event type of 
#' interest. 
#' @param type Identifies the type of label that is being modeled. Must
#' be 'bead', 'doublet', 'debris', or 'dead'.
#' @param loss Specifies the type of loss used to tune the GBM. Can be either
#' "auc" for the area under the curve or "class" for classification error. 
#' @param n number of observations in training dataset.
#' @param standardize Indicates if the data should be standardized. Because
#' the data are on different scales, it should be standardized for
#' this analysis.
#'
#' @return An updated \code{SingleCellExperiment} is returned with the labels
#' for the parameter of interest (bead, doublet, debris, or dead) added to
#' the \code{label} object of the \code{SingleCellExperiment} and the 
#' probabilities for the event type added to the \code{probs} object of the 
#' \code{SingleCellExperiment}.
#'
#' @details
#' \code{gbmLabel} uses a gradient boosting machine to compute the final labels
#' for the specified parameter type (bead, doublet, debris, or dead). This step
#' cannot be completed until the corresponding initialization function 
#' (\code{initialBead}, \code{initialDebris}, \code{initialDoublet}, or 
#' \code{initialDead}) is done on the \code{SingleCellExperiment} created by 
#' \code{readCytof}. 
#' The gbm is tuned using \code{\link[EZtune]{eztune}} and then predicted 
#' values are computed for all of the events in \code{x}. If the predicted
#' probability for the label type is greater than 0.5, the label is changed to
#' the specified type. However, if an observation already has a label other 
#' than 'cell' in the \code{label} variable, it will not be changed. The 
#' predicted probabilities for all of the observations are stored in the 
#' variable associated with that type in the \code{probs} object of \code{x}
#' for further analysis. Thus, it is possible to have a probability greater 
#' than 0.5 for 'debris' but still have a label of 'bead' if an observation 
#' was classified as a bead prior to classifying the debris.
#'
#' @examples
#' data("raw_data", package = "CATALYST")
#' sce <- readCytof(raw_data, beads = "Beads", viability = c("cisPt1", "cisPt2"))
#' sce <- initialBead(sce)
#' sce <- gbmLabel(sce, type = "bead", loss = "auc")
#' head(probs(sce))
#' table(label(sce))
#' 
#' @export
gbmLabel <- function(x, type = c("bead", "doublet", "debris", "dead"), 
                     loss = c("auc", "class"), n = 4000, standardize = TRUE) {
    
    if (!methods::is(x, "SingleCellExperiment")) {
        stop("x must be an object created with readCytof")
    }
    
    type <- match.arg(tolower(type), choices = c("bead", "debris", 
                                                 "doublet", "dead"))
    loss <- match.arg(tolower(loss), c("auc", "class"))
    
    if (standardize) {
        xs <- scale(x$tech)
    } else {
        xs <- x$tech
    }
    
    index <- modelData(x, type = type)
    
    if (sum(x$initial[index, grep(type, colnames(x$initial))] == -1) < 100 | 
        sum(x$initial[index, grep(type, colnames(x$initial))] == 1) < 100) {
        warning("Not enough ", type, " or non-", type, "to build model.")
        pred <- rep(0, nrow(xs))
    } else {
        gbmTune <- EZtune::eztune(x = xs[index, ], 
                                  y = factor(x$initial[index, 
                                                       grep(type, 
                                                            colnames(x$initial))]), 
                                  method = "gbm",
                                  fast = 0.5, loss = loss)
        
        dat <- data.frame(init = as.numeric(x$initial[index, 
                                                      grep(type, 
                                                           colnames(x$initial))]), 
                          xs[index, ])
        dat$init <- ifelse(dat$init == 1, dat$init, 0)
        
        gbmfit <- gbm::gbm(init ~ ., data = dat,
                           distribution = "bernoulli",
                           n.trees = gbmTune$n.trees,
                           interaction.depth = gbmTune$interaction.depth,
                           shrinkage = gbmTune$shrinkage,
                           n.minobsinnode = gbmTune$n.minobsinnode)
        
        pred <- gbm::predict.gbm(gbmfit, as.data.frame(xs), 
                                 n.trees =  gbmTune$n.trees, 
                                 type = "response")
    }
    
    x$probs[, grep(type, colnames(x$initial))] <- pred
    x$label[x$label == "cell"] <- ifelse(round(pred[x$label == "cell"]), 
                                         type, "cell")
    
    x
}
jillbo1000/cytofQC documentation built on Aug. 23, 2023, 9:47 p.m.