#' Obtain the distance to the nearest TSS, miRNA, and/or exon for a list of
#' peaks
#'
#' Obtain the distance to the nearest TSS, miRNA, exon et al for a list of peak
#' locations leveraging IRanges and biomaRt package
#'
#'
#' @param myPeakList A \link[GenomicRanges:GRanges-class]{GRanges} object
#' @param mart A mart object, used if AnnotationData is not supplied, see
#' useMart of bioMaRt package for details
#' @param featureType A charcter vector used with mart argument if
#' AnnotationData is not supplied; choose from "TSS", "miRNA" or "Exon"
#' @param AnnotationData A \link[GenomicRanges:GRanges-class]{GRanges} or
#' \link{annoGR} object. It can be obtained from the function getAnnotation or
#' customized annotation of class GRanges containing additional variable:
#' strand (1 or + for plus strand and -1 or - for minus strand). Pre-compliled
#' annotations, such as TSS.human.NCBI36, TSS.mouse.NCBIM37, TSS.rat.RGSC3.4
#' and TSS.zebrafish.Zv8, are provided by this package (attach them with data()
#' function). Another method to provide annotation data is to obtain through
#' biomaRt in real time by using the mart and featureType option
#' @param output \describe{
#' \item{nearestLocation (default)}{will output the nearest features calculated
#' as PeakLoc - FeatureLocForDistance; when selected, the output can consist of
#' both "strictly nearest features (non-overlapping)" and "overlapping features"
#' as long as they are the nearest}
#' \item{overlapping}{will output overlapping features with maximum gap
#' specified as maxgap between peak range and feature range; it is possible for
#' a peak to be annotated with zero ("NA" will be returned) or multiple
#' overlapping features if exist}
#' \item{both}{will output all the nearest features as well as any features
#' that overlap with the peak that is not the nearest}
#' \item{shortestDistance}{will output the features with the shortest distance;
#' the "shortest distance" is determined from either ends of the feature to
#' either ends of the peak}
#' \item{upstream&inside}{will output all upstream and overlapping features with
#' maximum gap}
#' \item{inside&downstream}{will output all downstream and overlapping features
#' with maximum gap}
#' \item{upstream}{will output all upstream features with maximum gap}
#' \item{downstream}{will output all downstream features with maximum gap}
#' \item{upstreamORdownstream}{will output all upstream features with maximum
#' gap or downstream with maximum gap}
#' \item{nearestBiDirectionalPromoters}{will use \link{annoPeaks} to
#' annotate peaks. Nearest promoters from both direction of the peaks (strand
#' is considered). It will report bidirectional promoters if there are
#' promoters in both directions in the given region (defined by bindingRegion).
#' Otherwise, it will report the closest promoter in one direction.} }
#' @param multiple Not applicable when output is nearest. TRUE: output multiple
#' overlapping features for each peak. FALSE: output at most one overlapping
#' feature for each peak. This parameter is kept for backward compatibility,
#' please use select.
#' @param maxgap The maximum \emph{gap} that is allowed between 2 ranges for
#' the ranges to be considered as overlapping. The \emph{gap} between 2 ranges
#' is the number of positions that separate them. The \emph{gap} between 2
#' adjacent ranges is 0. By convention when one range has its start or end
#' strictly inside the other (i.e. non-disjoint ranges), the \emph{gap} is
#' considered to be -1.
#' @param PeakLocForDistance Specify the location of peak for calculating
#' distance,i.e., middle means using middle of the peak to calculate distance
#' to feature, start means using start of the peak to calculate the distance to
#' feature, endMinusStart means using the end of the peak to calculate the
#' distance to features on plus strand and the start of the peak to calculate
#' the distance to features on minus strand. To be compatible with previous
#' version, by default using start
#' @param FeatureLocForDistance Specify the location of feature for calculating
#' distance,i.e., middle means using middle of the feature to calculate
#' distance of peak to feature, start means using start of the feature to
#' calculate the distance to feature, TSS means using start of feature when
#' feature is on plus strand and using end of feature when feature is on minus
#' strand, geneEnd means using end of feature when feature is on plus strand
#' and using start of feature when feature is on minus strand. To be compatible
#' with previous version, by default using TSS
#' @param select "all" may return multiple overlapping peaks, "first" will
#' return the first overlapping peak, "last" will return the last overlapping
#' peak and "arbitrary" will return one of the overlapping peaks.
#' @param ignore.strand When set to TRUE, the strand information is ignored in
#' the annotation. Unless you have stranded peaks and you are interested in
#' annotating peaks to the features in the same strand only, you should just
#' use the default setting ignore.strand = TRUE.
#' @param bindingRegion Annotation range used for \link{annoPeaks}, which is a
#' vector with two integer values, default to c (-5000, 5000). The first one
#' must be no bigger than 0. And the sec ond one must be no less than 1. Once
#' bindingRegion is defined, annotation will based on \link{annoPeaks}. Here is
#' how to use it together with the parameter output and FeatureLocForDistance.
#' \itemize{ \item To obtain peaks with nearest bi-directional promoters within
#' 5kb upstream and 3kb downstream of TSS, set output =
#' "nearestBiDirectionalPromoters" and bindingRegion = c(-5000, 3000) \item To
#' obtain peaks within 5kb upstream and up to 3kb downstream of TSS within the
#' gene body, set output="overlapping", FeatureLocForDistance="TSS" and
#' bindingRegion = c(-5000, 3000) \item To obtain peaks up to 5kb upstream
#' within the gene body and 3kb downstream of gene/Exon End, set
#' output="overlapping", FeatureLocForDistance="geneEnd" and bindingRegion =
#' c(-5000, 3000) \item To obtain peaks from 5kb upstream to 3kb downstream of
#' genes/Exons, set output="overlapping", bindingType = "fullRange" and
#' bindingRegion = c(-5000, 3000) } For details, see \link{annoPeaks}.
#' @param ... Parameters could be passed to \link{annoPeaks}
#' @return An object of \link[GenomicRanges:GRanges-class]{GRanges} with slot
#' start holding the start position of the peak, slot end holding the end
#' position of the peak, slot space holding the chromosome location where the
#' peak is located, slot rownames holding the id of the peak. In addition, the
#' following variables are included. \item{list("feature")}{id of the feature
#' such as ensembl gene ID} \item{list("insideFeature")}{upstream: peak resides
#' upstream of the feature; downstream: peak resides downstream of the feature;
#' inside: peak resides inside the feature; overlapStart: peak overlaps with
#' the start of the feature; overlapEnd: peak overlaps with the end of the
#' feature; includeFeature: peak include the feature entirely}
#' \item{list("distancetoFeature")}{distance to the nearest feature such as
#' transcription start site. By default, the distance is calculated as the
#' distance between the start of the binding site and the TSS that is the gene
#' start for genes located on the forward strand and the gene end for genes
#' located on the reverse strand. The user can specify the location of peak and
#' location of feature for calculating this}
#' \item{list("start_position")}{start position of the feature such as gene}
#' \item{list("end_position")}{end position of the feature such as the gene}
#' \item{list("strand")}{1 or + for positive strand and -1 or - for negative
#' strand where the feature is located} \item{list("shortestDistance")}{The
#' shortest distance from either end of peak to either end the feature. }
#' \item{list("fromOverlappingOrNearest")}{Relevant only when output is set to
#' "both". If "nearestLocation": indicates this feature's start (feature's end
#' for features from minus strand) is the closest to the peak start ("strictly
#' nearest" or "nearest overlapping"); if "Overlapping": indicates this feature
#' overlaps with this peak although it is not the nearest (non-nearest
#' overlapping) }
#' @author Lihua Julie Zhu, Jianhong Ou
#' @seealso \link{getAnnotation}, \link{findOverlappingPeaks},
#' \link{makeVennDiagram}, \link{addGeneIDs}, \link{peaksNearBDP},
#' \link{summarizePatternInPeaks}, \link{annoGR}, \link{annoPeaks}
#' @references 1. Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package
#' to annotate ChIP-seq and ChIP-chip data. BMC Bioinformatics 2010,
#' 11:237doi:10.1186/1471-2105-11-237
#'
#' 2. Zhu L (2013). "Integrative analysis of ChIP-chip and ChIP-seq dataset."
#' In Lee T and Luk ACS (eds.), Tilling Arrays, volume 1067, chapter 4, pp.
#' -19. Humana Press. http://dx.doi.org/10.1007/978-1-62703-607-8_8
#' @keywords misc
#' @export
#' @import IRanges
#' @import GenomicRanges
#' @importFrom GenomeInfoDb seqlevels
#' @importFrom BiocGenerics start end width strand
#' @importFrom S4Vectors mcols
#' @importFrom dplyr %>% filter group_by top_n
#' @examples
#'
#'
#' ## example 1: annotate myPeakList by TxDb or EnsDb.
#' data(myPeakList)
#' library(ensembldb)
#' library(EnsDb.Hsapiens.v75)
#' annoData <- annoGR(EnsDb.Hsapiens.v75)
#' annotatePeak = annotatePeakInBatch(myPeakList[1:6], AnnotationData=annoData)
#' annotatePeak
#'
#' ## example 2: annotate myPeakList (GRanges)
#' ## with TSS.human.NCBI36 (Granges)
#' data(TSS.human.NCBI36)
#' annotatedPeak = annotatePeakInBatch(myPeakList[1:6],
#' AnnotationData=TSS.human.NCBI36)
#' annotatedPeak
#'
#' ## example 3: you have a list of transcription factor biding sites from
#' ## literature and are interested in determining the extent of the overlap
#' ## to the list of peaks from your experiment. Prior calling the function
#' ## annotatePeakInBatch, need to represent both dataset as GRanges
#' ## where start is the start of the binding site, end is the end of the
#' ## binding site, names is the name of the binding site, space and strand
#' ## are the chromosome name and strand where the binding site is located.
#'
#' myexp <- GRanges(seqnames=c(6,6,6,6,5,4,4),
#' IRanges(start=c(1543200,1557200,1563000,1569800,
#' 167889600,100,1000),
#' end=c(1555199,1560599,1565199,1573799,
#' 167893599,200,1200),
#' names=c("p1","p2","p3","p4","p5","p6", "p7")),
#' strand="+")
#' literature <- GRanges(seqnames=c(6,6,6,6,5,4,4),
#' IRanges(start=c(1549800,1554400,1565000,1569400,
#' 167888600,120,800),
#' end=c(1550599,1560799,1565399,1571199,
#' 167888999,140,1400),
#' names=c("f1","f2","f3","f4","f5","f6","f7")),
#' strand=rep(c("+", "-"), c(5, 2)))
#' annotatedPeak1 <- annotatePeakInBatch(myexp,
#' AnnotationData=literature)
#' pie(table(annotatedPeak1$insideFeature))
#' annotatedPeak1
#' ### use toGRanges or rtracklayer::import to convert BED or GFF format
#' ### to GRanges before calling annotatePeakInBatch
#' test.bed <- data.frame(space=c("4", "6"),
#' start=c("100", "1000"),
#' end=c("200", "1100"),
#' name=c("peak1", "peak2"))
#' test.GR = toGRanges(test.bed)
#' annotatePeakInBatch(test.GR, AnnotationData = literature)
#'
#' library(testthat)
#' peak <- GRanges(seqnames = "chr1",
#' IRanges(start = 24736757, end=24737528,
#' names = "testPeak"))
#' data(TSS.human.GRCh37)
#' TSS.human.GRCh37[names(TSS.human.GRCh37)== "ENSG00000001461"]
#' # GRanges object with 1 range and 1 metadata column:
#' # seqnames ranges strand | description
#' #<Rle> <IRanges> <Rle> | <character>
#' # ENSG00000001461 1 24742285-24799466 + | NIPA-like domain con..
#' peak
#' #GRanges object with 1 range and 0 metadata columns:
#' # seqnames ranges strand
#' #<Rle> <IRanges> <Rle>
#' # testPeak chr1 24736757-24737528 *
#' TSS.human.GRCh37[names(TSS.human.GRCh37)== "ENSG00000001460"]
#' #GRanges object with 1 range and 1 metadata column:
#' # seqnames ranges strand | description
#' #<Rle> <IRanges> <Rle> | <character>
#' # ENSG00000001460 1 24683490-24743424 - | UPF0490 protein C1or..
#' ap <- annotatePeakInBatch(peak, Annotation=TSS.human.GRCh37,
#' PeakLocForDistance = "start")
#' stopifnot(ap$feature=="ENSG00000001461")
#' ap <- annotatePeakInBatch(peak, Annotation=TSS.human.GRCh37,
#' PeakLocForDistance = "end")
#' stopifnot(ap$feature=="ENSG00000001461")
#' ap <- annotatePeakInBatch(peak, Annotation=TSS.human.GRCh37,
#' PeakLocForDistance = "middle")
#' stopifnot(ap$feature=="ENSG00000001461")
#' ap <- annotatePeakInBatch(peak, Annotation=TSS.human.GRCh37,
#' PeakLocForDistance = "endMinusStart")
#' stopifnot(ap$feature=="ENSG00000001461")
#' ## Let's calculate the distances between the peak and the TSS of the genes
#' ## in the annotation file used for annotating the peaks.
#' ## Please note that we need to compute the distance using the annotation
#' ## file TSS.human.GRCh37.
#' ## If you would like to use TxDb.Hsapiens.UCSC.hg19.knownGene,
#' ## then you will need to annotate the peaks
#' ## using TxDb.Hsapiens.UCSC.hg19.knownGene as well.
#' ### using start
#' start(peak) -start(TSS.human.GRCh37[names(TSS.human.GRCh37)==
#' "ENSG00000001461"]) #picked
#' #[1] -5528
#' start(peak) -end(TSS.human.GRCh37[names(TSS.human.GRCh37)==
#' "ENSG00000001460"])
#' #[1] -6667
#' #### using middle
#' (start(peak) + end(peak))/2 -
#' start(TSS.human.GRCh37[names(TSS.human.GRCh37)== "ENSG00000001461"])
#' #[1] -5142.5
#' (start(peak) + end(peak))/2 -
#' end(TSS.human.GRCh37[names(TSS.human.GRCh37)== "ENSG00000001460"])
#' # [1] 49480566
#' end(peak) -start(TSS.human.GRCh37[names(TSS.human.GRCh37)==
#' "ENSG00000001461"]) #picked
#' # [1] -4757
#' end(peak) -end(TSS.human.GRCh37[names(TSS.human.GRCh37)==
#' "ENSG00000001460"])
#' # [1] -5896
#' #### using endMinusStart
#' end(peak) - start(TSS.human.GRCh37[names(TSS.human.GRCh37)==
#' "ENSG00000001461"]) ## picked
#' # [1] -4575
#' start(peak) -end(TSS.human.GRCh37[names(TSS.human.GRCh37)==
#' "ENSG00000001460"])
#' #[1] -6667
#' ###### using txdb object to annotate the peaks
#' library(org.Hs.eg.db)
#' select(org.Hs.eg.db, key="STPG1", keytype="SYMBOL",
#' columns=c("ENSEMBL", "ENTREZID", "SYMBOL"))
#' # SYMBOL ENSEMBL ENTREZID
#' # STPG1 ENSG00000001460 90529
#' select(org.Hs.eg.db, key= "ENSG00000001461", keytype="ENSEMBL",
#' columns=c("ENSEMBL", "ENTREZID", "SYMBOL"))
#' #ENSEMBL ENTREZID SYMBOL
#' # ENSG00000001461 57185 NIPAL3
#' require(TxDb.Hsapiens.UCSC.hg19.knownGene)
#' txdb.ann <- genes(TxDb.Hsapiens.UCSC.hg19.knownGene)
#' STPG1 <- select(org.Hs.eg.db, key="STPG1", keytype="SYMBOL",
#' columns=c( "SYMBOL", "ENSEMBL", "ENTREZID"))[1,3]
#' NIPAL3 <- select(org.Hs.eg.db, key="NIPAL3", keytype="SYMBOL",
#' columns=c( "SYMBOL", "ENSEMBL", "ENTREZID"))[1,3]
#' ap <- annotatePeakInBatch(peak, Annotation=txdb.ann,
#' PeakLocForDistance = "start")
#' expect_equal(ap$feature, STPG1)
#' ap <- annotatePeakInBatch(peak, Annotation=txdb.ann,
#' PeakLocForDistance = "end")
#' expect_equal(ap$feature, STPG1)
#' ap <- annotatePeakInBatch(peak, Annotation=txdb.ann,
#' PeakLocForDistance = "middle")
#' expect_equal(ap$feature, STPG1)
#' ap <- annotatePeakInBatch(peak, Annotation=txdb.ann,
#' PeakLocForDistance = "endMinusStart")
#' expect_equal(ap$feature, NIPAL3)
#' txdb.ann[NIPAL3]
#' txdb.ann[txdb.ann$gene_id == NIPAL3]
#' # GRanges object with 1 range and 1 metadata column:
#' # seqnames ranges strand | gene_id
#' # <Rle> <IRanges> <Rle> | <character>
#' # 57185 chr1 24742245-24799473 + | 57185
#' #-------
#' txdb.ann[txdb.ann$gene_id == STPG1]
#' # GRanges object with 1 range and 1 metadata column:
#' # seqnames ranges strand | gene_id
#' # <Rle> <IRanges> <Rle> | <character>
#' # 90529 chr1 24683489-24741587 - | 90529
#'
annotatePeakInBatch <-
function (myPeakList, mart, featureType = c("TSS", "miRNA", "Exon"),
AnnotationData,
output = c("nearestLocation", "overlapping", "both",
"shortestDistance", "inside",
"upstream&inside", "inside&downstream",
"upstream", "downstream",
"upstreamORdownstream",
"nearestBiDirectionalPromoters"),
multiple = c(TRUE,FALSE), maxgap = -1L,
PeakLocForDistance=c("start","middle","end", "endMinusStart"),
FeatureLocForDistance=c("TSS","middle","start","end", "geneEnd"),
select=c("all", "first", "last", "arbitrary"),
ignore.strand=TRUE, bindingRegion=NULL, ...)
{
if(output[1]=="nearestStart") output <- "nearestLocation"
featureType = match.arg(featureType)
PeakLocForDistance = match.arg(PeakLocForDistance)
FeatureLocForDistance = match.arg(FeatureLocForDistance)
output = match.arg(output)
select = match.arg(select)
multiple = multiple[1]
if (PeakLocForDistance == "endMinusStart")
{
if (missing(AnnotationData) || length(AnnotationData) == 0)
{
if (missing(mart)) {
stop("Error in querying biomart database.
No valid mart object is passed in!
Suggest call getAnnotation before calling
annotatePeakInBatch")
}
else if(!is(mart, "Mart")){
if(is(mart, "GRanges")){
warning("AnnotationData is missing, and a GRanges is passed
to mart parameter. Trying to annotate peaks by
the GRanges you input.")
AnnotationData <- mart
mart <- NULL
} else {
stop("Error in querying biomart database.
No valid mart object is passed in!
Suggest call getAnnotation before calling
annotatePeakInBatch")
}
}
else {
AnnotationData <- getAnnotation(mart, featureType = featureType)
}
}
if (!length(names(AnnotationData)) || any(is.na(names(AnnotationData))))
{
names(AnnotationData) <- paste0("ann", seq_along(AnnotationData))
}
plusAnno = AnnotationData[strand(AnnotationData) == "+"]
minusAnno = AnnotationData[strand(AnnotationData) == "-"]
if (length(plusAnno) > 0)
r.plus <- annotatePeakInBatch(myPeakList,
AnnotationData = plusAnno,
featureType = featureType,
PeakLocForDistance = "end",
output = output,
multiple = multiple,
select = select,
maxgap = maxgap,
FeatureLocForDistance = FeatureLocForDistance,
ignore.strand = TRUE,
bindingRegion = bindingRegion, ...)
if (length(minusAnno) > 0)
r.minus <- annotatePeakInBatch(myPeakList,
AnnotationData = minusAnno,
featureType = featureType,
PeakLocForDistance = "start",
output = output,
multiple = multiple,
select = select,
maxgap = maxgap,
FeatureLocForDistance = FeatureLocForDistance,
ignore.strand = TRUE,
bindingRegion = bindingRegion, ...)
if (length(plusAnno) > 0 & length(minusAnno) == 0) {
return(r.plus)
}
else if (length(plusAnno) == 0 & length(minusAnno) > 0) {
return(r.minus)
}
else if (length(plusAnno) > 0 & length(minusAnno) > 0) {
r.both <- c(r.plus, r.minus)
r.both <- r.both[!is.na(r.both$fromOverlappingOrNearest)]
r.both.df <- cbind(uid = names(r.both), as.data.frame(r.both))
r.both.df %>%
filter(fromOverlappingOrNearest == "NearestLocation") %>%
group_by(peak) %>%
top_n(-1, abs(distancetoFeature)) -> r.n.df
if (nrow(r.n.df) == 0)
return(r.both)
else if (length(r.both[r.both$fromOverlappingOrNearest != "NearestLocation"]) == 0)
return(r.both[names(r.both) %in% r.n.df$uid & !is.na(r.both$feature)])
else
return(r.both[(names(r.both) %in% r.n.df$uid |
r.both$fromOverlappingOrNearest != "NearestLocation") & !is.na(r.both$feature)])
}
} ### end of if endMinusStart
if(output[1]=="nearestStart") output <- "nearestLocation"
featureType = match.arg(featureType)
PeakLocForDistance = match.arg(PeakLocForDistance)
FeatureLocForDistance = match.arg(FeatureLocForDistance)
output = match.arg(output)
select = match.arg(select)
multiple = multiple[1]
if ((output == "overlapping" || output == "both")
&& select =="all" && multiple==FALSE) {
warning("Please use select instead of multiple!")
select = "first"
}
if(output=="upstream&inside"){
if(FeatureLocForDistance!="TSS") {
FeatureLocForDistance <- "TSS"
warning("FeatureLocForDistance is set to TSS")
}
select <- "all"
}
if(output=="inside&downstream"){
if(FeatureLocForDistance!="geneEnd"){
FeatureLocForDistance <- "geneEnd"
warning("FeatureLocForDistance is set to geneEnd")
}
select <- "all"
}
if (missing(myPeakList)) stop("Missing required argument myPeakList!")
if (!is(myPeakList, "GRanges")) {
stop("No valid myPeakList passed in. It needs to be GRanges object")
}
if (missing(AnnotationData)) {
message("No AnnotationData as GRanges is passed in,
so now querying biomart database for AnnotationData ....")
if (missing(mart)) {
stop("Error in querying biomart database.
No valid mart object is passed in!
Suggest call getAnnotation before calling
annotatePeakInBatch")
}
if(!is(mart, "Mart")){
if(is(mart, "GRanges")){
warning("AnnotationData is missing, and a GRanges is passed
to mart parameter. Trying to annotate peaks by
the GRanges you input.")
AnnotationData <- mart
mart <- NULL
}else{
stop("Error in querying biomart database.
No valid mart object is passed in!
Suggest call getAnnotation before calling
annotatePeakInBatch")
}
}else{
AnnotationData <- getAnnotation(mart, featureType = featureType)
message("Done querying biomart database, start annotating ....
Better way would be calling getAnnotation before
calling annotatePeakInBatch")
}
}
if (!inherits(AnnotationData,
c("GRanges", "annoGR"))) {
stop("AnnotationData needs to be GRanges or annoGR object")
}
if (!length(names(AnnotationData)) || any(is.na(names(AnnotationData))))
{
names(AnnotationData) <- paste0("ann", seq_along(AnnotationData))
}
if(inherits(AnnotationData, "annoGR")){
TSS.ordered <- as(AnnotationData, "GRanges")
}else{
TSS.ordered <- AnnotationData
}
nAnno <- length(TSS.ordered)
rm(AnnotationData)
rm(nAnno)
if(length(bindingRegion)>1){
message("Annotate peaks by annoPeaks, see ?annoPeaks for details.")
## FeatureLocForDistance=c("TSS","middle","start","end", "geneEnd")
##"startSite", "endSite", "fullRange"
dots <- list(...)
if(!"bindingType" %in% names(dots)){
if(output %in%
c("overlapping",
"nearestBiDirectionalPromoters")){
bindingType <- switch(
output,
nearestBiDirectionalPromoters="nearestBiDirectionalPromoters",
overlapping=switch(FeatureLocForDistance,
TSS="startSite",
geneEnd="endSite",
NA),
NA
)
}
}else{
bindingType <- dots$bindingType
}
if(exists("bindingType") && !is.na(bindingType)){
message("maxgap will be ignored.")
dots$peak <- myPeakList
dots$annoData <- TSS.ordered
dots$bindingType <- bindingType
dots$bindingRegion <- bindingRegion
return(do.call(annoPeaks, dots))
}else{
message("bindingRegion will be ignored.")
}
}
if (is.null(names(TSS.ordered))){
names(TSS.ordered) <- formatC(seq_along(TSS.ordered),
width=nchar(length(TSS.ordered)),
flag="0")
}
if (is.null(names(myPeakList))) {
names(myPeakList) <- formatC(seq_along(myPeakList),
width = nchar(length(myPeakList)),
flag = "0")
}
if(any(duplicated(names(myPeakList)))){
warning("Found duplicated names in myPeakList.
Changing the peak names ...")
names(myPeakList) <- formatC(seq_along(myPeakList),
width = nchar(length(myPeakList)),
flag = "0")
}
savedNames <- names(myPeakList)
##clear seqnames, the format should be chr+NUM
##TODO, how about the seqname not start with chr?
## fix by seqlevelsStyle
TSS.ordered <- formatSeqnames(TSS.ordered, myPeakList)
#myPeakList <- formatSeqnames(myPeakList)
if(!all(seqlevels(myPeakList) %in% seqlevels(TSS.ordered))){
warning("not all the seqnames of myPeakList is
in the AnnotationData.")
}
if(length(myPeakList)>10000){
##huge dataset
myPeakList <- split(myPeakList,
cut(seq_along(myPeakList),
ceiling(length(myPeakList)/5000)))
myPeakList <- lapply(myPeakList, annotatePeakInBatch,
AnnotationData=TSS.ordered,
output = output, maxgap = maxgap,
PeakLocForDistance=PeakLocForDistance,
FeatureLocForDistance=FeatureLocForDistance,
select=select,
ignore.strand=ignore.strand)
names(myPeakList) <- NULL
myPeakList <- unlist(GRangesList(myPeakList))
names(myPeakList) <- make.names(paste(myPeakList$peak,
myPeakList$feature))
##myPeakList
return(myPeakList)
}
###STEP1 get nearst annotation for each peak,
###use distanceToNearest(query, subject, ignore.strand=T/F, select)
## the distance got here is the shortestDistance
## select could only be arbitrary or all,
## if it is "first" or "last", use "all" instead.
## if output=="nearest", annotation should only consider the start point
## ignore.strand <- all(strand(myPeakList)=="*") ||
## all(strand(TSS.ordered)=="*") ||
## all(strand(myPeakList)=="+")
nsel <- ifelse(select %in% c("all", "first", "last"),
"all", "arbitrary")
featureGR <- TSS.ordered
end(featureGR) <-
start(featureGR) <-
switch(FeatureLocForDistance,
TSS=ifelse(strand(featureGR)=="-",
end(featureGR),
start(featureGR)),
geneEnd=ifelse(strand(featureGR)=="-",
start(featureGR),
end(featureGR)),
middle=round(rowMeans(cbind(start(featureGR),
end(featureGR)))),
start=start(featureGR),
end=end(featureGR)
)
myPeaksGR <- myPeakList
end(myPeaksGR) <-
start(myPeaksGR) <-
switch(PeakLocForDistance,
middle=round(rowMeans(cbind(start(myPeaksGR),
end(myPeaksGR)))),
start=start(myPeaksGR),
end=end(myPeaksGR)
)
if(output=="nearestLocation"){
dist <- as.data.frame(nearest(myPeaksGR, featureGR,
ignore.strand=ignore.strand,
select=nsel))
if(nrow(dist)==0) dist[1,] <- NA ##in case no match at all
if(nsel=="arbitrary") {
dist <- cbind(queryHits=seq_along(myPeakList),
subjectHits=dist)
colnames(dist) <- c("queryHits", "subjectHits")
}
dist$output <- rep("NearestLocation", nrow(dist))
}
if(output=="both"){
distN <- as.data.frame(nearest(myPeaksGR, featureGR,
ignore.strand=ignore.strand,
select=nsel))
if(nrow(distN)==0) distN[1,]<-NA
if(nsel=="arbitrary") {
distN <- cbind(queryHits=seq_along(myPeakList),
subjectHits=distN)
colnames(distN) <- c("queryHits", "subjectHits")
}
distO <- as.data.frame(findOverlaps(myPeakList, TSS.ordered,
maxgap=maxgap,
ignore.strand=ignore.strand,
select=select))
if(nrow(distO)==0) distO[1,]<-NA
if(ncol(distO)==1){
distO <- cbind(queryHits=seq_along(myPeakList),
subjectHits=distO)
colnames(distO) <- c("queryHits", "subjectHits")
}
distN$output <- rep("NearestLocation", nrow(distN))
distN <- distN[!is.na(distN$subjectHits),]
distO$output <- rep("Overlapping", nrow(distO))
distO <- distO[!is.na(distO$subjectHits),]
dist <- rbind(distN, distO)
dist <- dist[!duplicated(dist[,c("queryHits", "subjectHits")]),
,drop=FALSE]
dist <- dist[order(dist$queryHits, dist$subjectHits),,drop=FALSE]
}
if(output=="overlapping"){
dist <- as.data.frame(findOverlaps(myPeakList, TSS.ordered,
maxgap=maxgap,
ignore.strand=ignore.strand,
select=select))
if(nrow(dist)==0) dist[1,] <- NA
if(ncol(dist)==1){
dist <- cbind(queryHits=seq_along(myPeakList), subjectHits=dist)
colnames(dist) <- c("queryHits", "subjectHits")
}
dist$output <- rep("Overlapping", nrow(dist))
}
if(output=="shortestDistance"){
dist <- as.data.frame(nearest(myPeakList, TSS.ordered,
ignore.strand=ignore.strand,
select=nsel))
if(nrow(dist)==0) dist[1,] <- NA ##in case no match at all
if(nsel=="arbitrary") {
dist <- cbind(queryHits=seq_along(myPeakList), subjectHits=dist)
colnames(dist) <- c("queryHits", "subjectHits")
}
dist$output <- rep("shortestDistance", nrow(dist))
}
if(output=="upstream&inside"){
#upstream
featureGR <- TSS.ordered
start <- ifelse(strand(featureGR)=="-",
start(featureGR),
start(featureGR)-max(maxgap, 1))
width <- width(featureGR) + max(maxgap, 1)
start(featureGR) <- start
width(featureGR) <- width
dist <- as.data.frame(findOverlaps(myPeakList, featureGR,
ignore.strand=ignore.strand,
select=select,
type="any"))
dist$output <- rep("Upstream&Inside", nrow(dist))
}
if(output=="upstream"){
#upstream
featureGR <- TSS.ordered
start <- ifelse(strand(featureGR)=="-",
end(featureGR)+1,
start(featureGR)-max(maxgap, 1))
width <- max(maxgap, 1)
start(featureGR) <- start
width(featureGR) <- width
dist <- as.data.frame(findOverlaps(myPeakList, featureGR,
ignore.strand=ignore.strand,
select=select,
type="any"))
dist$output <- rep("Upstream", nrow(dist))
}
if(output=="inside&downstream"){
#downstream
featureGR <- TSS.ordered
start <- ifelse(strand(featureGR)=="-",
start(featureGR)-max(maxgap, 1),
start(featureGR))
width <- width(featureGR) + max(maxgap, 1)
start(featureGR) <- start
width(featureGR) <- width
dist <- as.data.frame(findOverlaps(myPeakList, featureGR,
ignore.strand=ignore.strand,
select=select,
type="any"))
dist$output <- rep("Inside&Downstream", nrow(dist))
}
if(output=="downstream"){
#downstream
featureGR <- TSS.ordered
start <- ifelse(strand(featureGR)=="-",
start(featureGR)-max(maxgap, 1),
end(featureGR)+1)
width <- max(maxgap, 1)
start(featureGR) <- start
width(featureGR) <- width
dist <- as.data.frame(findOverlaps(myPeakList, featureGR,
ignore.strand=ignore.strand,
select=select,
type="any"))
dist$output <- rep("Downstream", nrow(dist))
}
if(output=="upstreamORdownstream"){
featureGR <- TSS.ordered
start <- ifelse(strand(featureGR)=="-",
end(featureGR)+1,
start(featureGR)-max(maxgap, 1))
width <- max(maxgap, 1)
start(featureGR) <- start
width(featureGR) <- width
dist1 <- as.data.frame(findOverlaps(myPeakList, featureGR,
ignore.strand=ignore.strand,
select=select,
type="any"))
dist1$output <- rep("Upstream", nrow(dist1))
featureGR <- TSS.ordered
start <- ifelse(strand(featureGR)=="-",
start(featureGR)-max(maxgap, 1),
end(featureGR)+1)
width <- max(maxgap, 1)
start(featureGR) <- start
width(featureGR) <- width
dist2 <- as.data.frame(findOverlaps(myPeakList, featureGR,
ignore.strand=ignore.strand,
select=select,
type="any"))
dist2$output <- rep("Downstream", nrow(dist2))
dist <- rbind(dist1, dist2)
}
if(output=="inside"){
dist <- as.data.frame(findOverlaps(myPeakList, TSS.ordered,
ignore.strand=ignore.strand,
select=select,
type="within"))
dist$output <- rep("inside", nrow(dist))
}
if(output=="upstream2downstream"){
featureGR <- TSS.ordered
start(featureGR) <-
apply(cbind(start(featureGR) - maxgap, 1), 1, max)
end(featureGR) <- end(featureGR) + maxgap
dist <- as.data.frame(findOverlaps(myPeakList, featureGR,
ignore.strand=ignore.strand,
select=select,
type="any"))
dist$output <- rep("upstream2downstream", nrow(dist))
}
## nearest is NOT filtered by maxgap, is this should be changed?
## dist <- dist[!is.na(dist$subjectHits), ]
## distance <- distance(myPeakList[dist$queryHits],
## TSS.ordered[dist$subjectHits],
## ignore.strand=ignore.strand)
## dist <- dist[abs(distance) <= maxgap, ]
if(output=="nearestBiDirectionalPromoters" && length(bindingRegion)<=1){
stop("If output is nearestBiDirectionalPromoters,",
"please set bindingRegion. See ?annoPeaks for details.")
}
myPeakList.Hit <-
myPeakList[dist$queryHits[!is.na(dist$subjectHits)]]
myPeakList.NA <-
myPeakList[!names(myPeakList) %in% names(myPeakList.Hit)]
subjectHits <-
TSS.ordered[dist$subjectHits[!is.na(dist$subjectHits)]]
mcols(subjectHits)$output <-
dist[!is.na(dist$subjectHits),"output"]
# myPeakList.Hit$distanceToNearest <-
# dist$distance[!is.na(dist$subjectHits)]
###STEP2 get distance for each peak and nearest annotation by
## distance(x, y). the distance is calculated by
## PeakLocForDistance=c("start","middle","end"),
## FeatureLocForDistance=c("TSS","middle","start",
## "end", "geneEnd")
FeatureLoc <-
switch(FeatureLocForDistance,
middle=as.integer(round(rowMeans(cbind(start(subjectHits),
end(subjectHits))))),
start=start(subjectHits),
end=end(subjectHits),
geneEnd=as.integer(ifelse(strand(subjectHits)=="-",
start(subjectHits),
end(subjectHits))),
TSS=as.integer(ifelse(strand(subjectHits)=="-",
end(subjectHits),
start(subjectHits))))
PeakLoc <-
switch(PeakLocForDistance,
start=start(myPeakList.Hit),
end=end(myPeakList.Hit),
middle=as.integer(round(rowMeans(
cbind(start(myPeakList.Hit), end(myPeakList.Hit))))))
distancetoFeature <- as.numeric(ifelse(strand(subjectHits)=="-",
FeatureLoc - PeakLoc,
PeakLoc - FeatureLoc))
###STEP3 relationship between query and subject:
### "inside", "overlapEnd", "overlapStart",
### "includeFeature", "upstream", "downstream"
insideFeature <- getRelationship(myPeakList.Hit, subjectHits)
myPeakList.Hit$peak <- names(myPeakList.Hit)
myPeakList.Hit$feature <- names(subjectHits)
myPeakList.Hit$start_position <- start(subjectHits)
myPeakList.Hit$end_position <- end(subjectHits)
myPeakList.Hit$feature_strand <- as.character(strand(subjectHits))
myPeakList.Hit$insideFeature <- insideFeature[, "insideFeature"]
myPeakList.Hit$distancetoFeature <- distancetoFeature
myPeakList.Hit$shortestDistance <-
as.integer(insideFeature[,"shortestDistance"])
myPeakList.Hit$fromOverlappingOrNearest <- subjectHits$output
##save oid for select == "first" or "last" filter
myPeakList.Hit$oid <- insideFeature[, "ss"]
###combind data of NA with Hits
if(length(myPeakList.NA)>0){
myPeakList.NA$peak <- names(myPeakList.NA)
for(ncol in c("feature",
"start_position",
"end_position",
"feature_strand",
"insideFeature",
"distancetoFeature",
"shortestDistance",
"fromOverlappingOrNearest",
"oid")){
mcols(myPeakList.NA)[, ncol] <- NA
}
## in case duplicated colnames
colnames(mcols(myPeakList.NA)) <- colnames(mcols(myPeakList.Hit))
myPeakList <- c(myPeakList.Hit, myPeakList.NA)
}else{
myPeakList <- myPeakList.Hit
}
###output the results
##select=c("all", "first", "last", "arbitrary"))
##output = c("nearest", "overlapping", "both")
##if select %in% first or last, must filter the duplicate annotation
##if output="both", must filter the duplicate annotation
##if input is GRanges, output is GRanges
###the order of output should be same as input
if(select=="first"){
myPeakList <-
myPeakList[order(names(myPeakList), abs(myPeakList$oid))]
myPeakList <-
myPeakList[!duplicated(names(myPeakList))]
}
if(select=="last"){
myPeakList <-
myPeakList[order(names(myPeakList), -abs(myPeakList$oid))]
myPeakList <-
myPeakList[!duplicated(names(myPeakList))]
}
##remove column oid
myPeakList$oid <- NULL
##re-order myPeakList as the original order
oid <- seq_along(savedNames)
names(oid) <- savedNames
oid <- oid[names(myPeakList)]
if(!any(is.na(oid))){
myPeakList <- myPeakList[order(oid)]
}
if(output=="nearestLocation"){
## remove duplicate annotation, just keep the nearest one
removeDuplicates <- function(gr){
dup <- duplicated(gr$peak)
if(any(dup)){
gr$oid <- seq_along(gr)
dup <- gr[dup]
gr.dup <- gr[gr$peak %in% dup$peak]
## bugs peak name must be different.
gr.NOTdup <- gr[!gr$peak %in% dup$peak]
gr.dup <- split(gr.dup, gr.dup$peak)
gr.dup <- lapply(gr.dup, function(.ele){
.ele[.ele$shortestDistance ==
min(.ele$shortestDistance)]
})
gr.dup <- unlist(GRangesList(gr.dup))
gr <- c(gr.dup, gr.NOTdup)
gr <- gr[order(gr$oid)]
gr$oid <- NULL
}
gr
}
myPeakList <- removeDuplicates(myPeakList)
}
names(myPeakList) <-
make.names(paste(myPeakList$peak, myPeakList$feature))
##myPeakList
return(myPeakList)
}
globalVariables(c("fromOverlappingOrNearest", "peak"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.