gtGO <- function(response, exprs, ..., id, annotation, probe2entrez, ontology = c("BP", "CC", "MF"),
minsize=1, maxsize=Inf,
multtest = c("Holm", "focuslevel", "BH", "BY"), focuslevel = 10,
sort = TRUE) {
# some input checking on response (unavoidable?)
call <- match.call()
if (is(exprs, "ExpressionSet")) {
data <- pData(exprs)
} else {
data <- eval(call$data)
}
if (is.matrix(data))
data <- data.frame(data)
formula.response <- (length(call$response) > 1) && (call$response[[1]] == "~")
if (!formula.response) {
name.response <- deparse(call$response)
response <- eval(call$response, data, parent.frame())
}
# get the right annotation package
if (missing(annotation)) {
if (is(exprs, "eSet")) {
annotation <- NULL
annotation <- annotation(exprs)
} else
stop("argument \"annotation\" is missing with no default.")
}
if (substr(annotation, nchar(annotation)-2, nchar(annotation)) == ".db")
annotation <- substr(annotation, 1, nchar(annotation)-3)
package <- paste(annotation, ".db", sep="")
require(package, character.only=TRUE) || stop("package ", package, " is not available")
# check whether "org" package is given
if (substr(annotation,1,4) == "org.")
extension <- "GO2ALLEGS"
else
extension <- "GO2ALLPROBES"
GOOBJECT <- eval(as.name(paste(annotation, extension, sep="")))
# reduce the terms
if (missing(id))
id <- mappedkeys(GOOBJECT)
myGOTERM <- lookUp(id, "GO", "TERM", load=TRUE)
# get the right ontology/ies
if (!missing(ontology)) {
choose <- sapply(myGOTERM, Ontology) %in% ontology
id <- id[choose]
myGOTERM <- myGOTERM[choose]
}
# retrieve sets
sets <- lookUp(id, annotation, extension)
sets <- lapply(sets, function(st) if (all(is.na(st))) character(0) else st)
# map back
if (!missing(probe2entrez)) {
if (is.environment(probe2entrez) || is(probe2entrez, "AnnDbBimap")) probe2entrez <- as.list(probe2entrez)
if (is.list(probe2entrez)) probe2entrez <- unlist(probe2entrez)
sets <- lapply(sets, function(set) {
names(probe2entrez)[probe2entrez %in% set]
})
}
# reduce to covariates available in exprs
if (is(exprs, "eSet"))
probes <- featureNames(exprs)
else
if (gt.options()$transpose)
probes <- rownames(exprs)
else
probes <- colnames(exprs)
sets <- lapply(sets, function(set) intersect(set, probes))
# size restrictions
size <- sapply(sets, length)
choose <- size >= minsize & size <= maxsize
sets <- sets[choose]
myGOTERM <- myGOTERM[choose]
if (length(sets) == 0) stop("No GO terms wih size between \"minsize\" and \"maxsize\"")
# perform tests and do multiple testing
if (length(sets) > 1) {
multtest <- match.arg(multtest)
if (multtest == "focuslevel") {
ancestors <- lapply(as.list(ontology), function(ont) {
ext <- paste(ont, "ANCESTOR", sep="")
GOOBJ <- eval(as.name(paste("GO", ont, "ANCESTOR", sep="")))
ontid <- intersect(keys(GOOBJ), id)
if (length(ontid) > 0) lookUp(ontid, "GO", ext) else list()
})
ancestors <- do.call(c, ancestors)
offspring <- lapply(as.list(ontology), function(ont) {
ext <- paste(ont, "OFFSPRING", sep="")
GOOBJ <- eval(as.name(paste("GO", ont, "OFFSPRING", sep="")))
ontid <- intersect(keys(GOOBJ), id)
if (length(ontid) > 0) lookUp(ontid, "GO", ext) else list()
})
offspring <- do.call(c, offspring)
offspring <- sapply(offspring, function(os) if (all(is.na(os))) character(0) else os)
if (is.numeric(focuslevel))
focuslevel <- findFocus(sets, ancestors = ancestors, offspring = offspring, maxsize = focuslevel)
res <- gt(response, exprs, ...)
res <- focusLevel(res, sets=sets, focus=focuslevel, ancestors = ancestors, offspring = offspring)
} else {
res <- p.adjust(gt(response, exprs, ..., subsets = sets), method = multtest)
}
} else
res <- gt(response, exprs, ..., subsets = sets)
# add names
alias(res) <- sapply(myGOTERM, function(mgt) if (is(mgt, "GOTerms")) Term(mgt) else "")
alias(res)[is.na(alias(res))] <- ""
if (sort)
res <- sort(res)
res
}
gtKEGG <- function(response, exprs, ..., id, annotation, probe2entrez,
multtest = c("Holm", "BH", "BY"), sort = TRUE) {
# some input checking on response (unavoidable?)
call <- match.call()
if (is(exprs, "ExpressionSet")) {
data <- pData(exprs)
} else {
data <- eval(call$data)
}
if (is.matrix(data))
data <- data.frame(data)
formula.response <- (length(call$response) > 1) && (call$response[[1]] == "~")
if (!formula.response) {
name.response <- deparse(call$response)
response <- eval(call$response, data, parent.frame())
}
# get the right annotation package
if (missing(annotation)) {
if (is(exprs, "eSet")) {
annotation <- NULL
annotation <- annotation(exprs)
} else
stop("argument \"annotation\" is missing with no default.")
}
if (substr(annotation, nchar(annotation)-2, nchar(annotation)) == ".db")
annotation <- substr(annotation, 1, nchar(annotation)-3)
package <- paste(annotation, ".db", sep="")
require(package, character.only=TRUE) || stop("package ", package, " is not available")
# check whether "org" package is given
if (substr(annotation,1,4) == "org.")
extension <- "PATH2EG"
else
extension <- "PATH2PROBE"
KEGGOBJECT <- eval(as.name(paste(annotation, extension, sep="")))
# default terms
if (missing(id))
id <- mappedkeys(KEGGOBJECT)
# retrieve sets
sets <- lookUp(id, annotation, extension)
# map back
if (!missing(probe2entrez)) {
if (is.environment(probe2entrez) || is(probe2entrez, "AnnDbBimap")) probe2entrez <- as.list(probe2entrez)
if (is.list(probe2entrez)) probe2entrez <- unlist(probe2entrez)
sets <- lapply(sets, function(set) {
names(probe2entrez)[probe2entrez %in% set]
})
}
# reduce to covariates available in exprs
if (is(exprs, "eSet"))
probes <- featureNames(exprs)
else
if (gt.options()$transpose)
probes <- rownames(exprs)
else
probes <- colnames(exprs)
sets <- lapply(sets, function(set) intersect(set, probes))
# perform tests and do multiple testing
if (length(sets) > 1) {
multtest <- match.arg(multtest)
res <- p.adjust(gt(response, exprs, ..., subsets = sets), method = multtest)
} else
res <- gt(response, exprs, ..., subsets = sets)
# add names
KEGGNAMES <- KEGGREST::keggList("pathway")
names(KEGGNAMES) <- gsub("path:map", "", names(KEGGNAMES))
alias(res) <- KEGGNAMES[names(res)]
alias(res)[is.na(alias(res))] <- ""
if (sort)
res <- sort(res)
res
}
gtBroad <- function(response, exprs, ..., id, annotation, probe2entrez, collection,
category = c("c1", "c2", "c3", "c4", "c5"),
multtest = c("Holm", "BH", "BY"), sort = TRUE) {
# some input checking on response (unavoidable?)
call <- match.call()
if (is(exprs, "ExpressionSet")) {
data <- pData(exprs)
} else {
data <- eval(call$data)
}
if (is.matrix(data))
data <- data.frame(data)
formula.response <- (length(call$response) > 1) && (call$response[[1]] == "~")
if (!formula.response) {
name.response <- deparse(call$response)
response <- eval(call$response, data, parent.frame())
}
# get the right annotation package
if (missing(annotation)) {
if (is(exprs, "eSet")) {
annotation <- NULL
annotation <- annotation(exprs)
} else
stop("argument \"annotation\" is missing with no default.")
}
if (substr(annotation, nchar(annotation)-2, nchar(annotation)) == ".db")
annotation <- substr(annotation, 1, nchar(annotation)-3)
package <- paste(annotation, ".db", sep="")
require(package, character.only=TRUE) || stop("package ", package, " is not available")
# read the file
if (missing(collection) || !is(collection, "GeneSetCollection"))
stop("Please specify a \"collection\", created with the getBroadSets function")
# Get the right categories
if (!missing(category)) {
pw.cat <- sapply(sapply(collection, GSEABase::collectionType), GSEABase::bcCategory)
collection <- collection[pw.cat %in% category]
}
# Get the right sets
if (!missing(id)) {
collection <- collection[id]
}
# Map symbol identifiers to anotation-specific identifiers
collection <- GSEABase::mapIdentifiers(collection, GSEABase::AnnotationIdentifier(annotation))
sets <- lapply(collection, GSEABase::geneIds)
names(sets) <- names(collection)
# map to probe identifiers
if (!missing(probe2entrez)) {
if (is.environment(probe2entrez) || is(probe2entrez, "AnnDbBimap")) probe2entrez <- as.list(probe2entrez)
if (is.list(probe2entrez)) probe2entrez <- unlist(probe2entrez)
sets <- lapply(sets, function(st) {
names(probe2entrez)[probe2entrez %in% st]
})
}
# reduce to covariates available in exprs
if (is(exprs, "eSet"))
probes <- featureNames(exprs)
else
if (gt.options()$transpose)
probes <- rownames(exprs)
else
probes <- colnames(exprs)
sets <- lapply(sets, function(set) intersect(set, probes))
# perform tests and do multiple testing
if (length(sets) > 1) {
multtest <- match.arg(multtest)
res <- p.adjust(gt(response, exprs, ..., subsets = sets), method = multtest)
} else
res <- gt(response, exprs, ..., subsets = sets)
if (sort)
res <- sort(res)
res
}
###################################################
# Function for using Anni concept profiles
###################################################
gtConcept <- function(response, exprs, ..., annotation, probe2entrez,
conceptmatrix, concept2name = "conceptID2name.txt",
entrez2concept = "entrezGeneToConceptID.txt", threshold = 1e-4,
share = TRUE, multtest = c("Holm", "BH", "BY"),
sort = TRUE) {
# some input checking on response (unavoidable?)
call <- match.call()
if (is(exprs, "eSet")) {
data <- pData(exprs)
} else {
data <- eval(call$data)
}
if (is.matrix(data))
data <- data.frame(data)
formula.response <- (length(call$response) > 1) && (call$response[[1]] == "~")
if (!formula.response) {
name.response <- deparse(call$response)
response <- eval(call$response, data, parent.frame())
}
# get the right annotation package
if (missing(annotation)) {
if (is(exprs, "eSet")) {
annotation <- NULL
annotation <- annotation(exprs)
} else
stop("argument \"annotation\" is missing with no default.")
}
if (substr(annotation, nchar(annotation)-2, nchar(annotation)) == ".db")
annotation <- substr(annotation, 1, nchar(annotation)-3)
package <- paste(annotation, ".db", sep="")
require(package, character.only=TRUE) || stop("package ", package, " is not available")
# read the big concept profiles matrix
nconcepts <- length(scan(conceptmatrix, what="", sep="\t", nlines=1, quiet=TRUE))
conceptmatrix <- scan(conceptmatrix, what="", sep="\t", quiet=TRUE)
conceptmatrix <- matrix(conceptmatrix, length(conceptmatrix)/nconcepts, nconcepts, byrow=TRUE)
rnames <- conceptmatrix[-1,1]
cnames <- conceptmatrix[1,-1]
conceptmatrix <- apply(conceptmatrix[-1,-1],2,as.numeric)
rownames(conceptmatrix) <- rnames
colnames(conceptmatrix) <- cnames
# use the threshold
conceptmatrix[conceptmatrix < threshold] <- 0
# prepare entrez2concept
entrez2concept <- matrix(scan(entrez2concept, what="", sep="\t", skip=1, quiet=TRUE), ncol=2, byrow=TRUE)
nms <- entrez2concept[,1]
entrez2concept <- as.list(entrez2concept[,2])
names(entrez2concept) <- nms
# prepare concept2probe mapping
if (is(exprs, "eSet"))
probes <- featureNames(exprs)
else
probes <- rownames(exprs)
if (missing(probe2entrez)) {
if (substr(annotation,1,3) == "org") {
probe2entrez <- as.list(probes) # assuming probe ids are entrez ids
names(probe2entrez) <- probes
} else
probe2entrez <- lookUp(probes, annotation, "ENTREZID")
} else
if (is.environment(probe2entrez) || is(probe2entrez, "AnnDbBimap"))
probe2entrez <- as.list(probe2entrez)
probe2entrez <- lapply(probe2entrez, as.character)
probe2concept <- entrez2concept[unlist(probe2entrez)]
names(probe2concept) <- names(probe2entrez)
probe2concept <- probe2concept[sapply(probe2concept, length) > 0]
# find duplicity of concepts and correct weights
concept2probe <- turnListAround(probe2concept)
duplicity <- sapply(concept2probe[rnames], length)
names(duplicity) <- rnames
if (share) # divides weight of concept equally over multiple probes
conceptmatrix <- conceptmatrix / matrix(duplicity, nrow = nrow(conceptmatrix), ncol=ncol(conceptmatrix))
conceptmatrix <- conceptmatrix[duplicity>0,]
# find weights
weights <- lapply(probe2concept, function(pb)
if(pb %in% rownames(conceptmatrix))
conceptmatrix[pb,]
else
NULL)
weights <- do.call(rbind, weights)
weights <- apply(weights, 2, function(cp) cp[cp>0])
# find alias
concept2name <- matrix(scan(concept2name, what="", sep="\t", skip=1, quote="", quiet=TRUE), ncol=2, byrow=TRUE)
nms <- concept2name[,1]
concept2name <- as.list(concept2name[,2])
names(concept2name) <- nms
browser()
# perform tests and do multiple testing
if (length(weights) > 1) {
multtest <- match.arg(multtest)
res <- p.adjust(gt(response, exprs, ..., weights = weights), method = multtest)
} else
res <- gt(response, exprs, ..., weights = weights)
# add names
alias(res) <- concept2name[names(res)]
if (sort)
res <- sort(res)
res
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.